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Abstract. Learning and planning control is hard. The search space of traditional plan-
ners consists of sequences of primitive actions. To exploit reusable subsequences and
other algorithmic regularities, however, we should instead search the general space of
programs that compute action sequences. Such programs may invoke very fast "think-
ing actions” consuming only nanoseconds (such as conditional jumps to certain code
addresses) as well as very slow control actions consuming seconds in the real world
(such as stretch-arm-until-obstacle-sensation). What is an optimal way of allocating
time to tests of such non-homogeneous programs? What is an optimal way of reusing
experience with previous tasks to learn solutions to new tasks? One answer is given
by the recent Optimal Ordered Problem Solver 0oPs, a near-bias-optimal incremen-
tal extension of Levin’s nonincremental universal search, which we apply to virtual
robotics for the first time: our snake robot uses OOPS to learn to walk and jump in a
partially observable environment (POMDP) with a huge state/action space.

1 Introduction

Traditional Al planning procedures [11] do not learn but systematically explore all possible
combinations of task-specific primitive actions. Due to the exploding search space they fail
to solve problems such as Towers of Hanoi with n disks (solution size 2™ — 1) for solution
sizes > 10,000 moves (Jana Koehler, IBM Research, personal communication, 2002). In
particular, they do not exploit algorithmic regularities in the solution space — they cannot
find the simple double-recursive program which solves Towers of Hanoi for arbitrary n.

Traditional reinforcement learners (RLs) [6] often perform even worse than Al planners.
For example, Anderson’s pioneering RL[1] did not solve Hanoi problems requiring more than
7 moves . The problems of traditional RLs in realistic control domains are due not only to
large state/action spaces and lack of exploitation of algorithmic regularities, but also to partial
observability, which is almost inescapable in the real world.

So what is a good way of searching in program space as opposed to raw solution space?
The control programs of Karl Sims [15] were recurrent neural networks which he evolved
in parallel with his interesting artificial creatures. The related, evolution-based Genetic Pro-
gramming (GP) [4, 2] is also sometimes viewed as a step in the right direction. Most existing
GP implementations, however have very limited search spaces and do not even allow for pro-
grams with loops and recursion, thus ignoring a main motivation for searching in program
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space. Neither the existing evolvers of recurrent networks nor the few GP implementations
that do permit recursion etc. have a principled way of allocating time to program tests. This
limits them to programs whose (typically small) runtimes have upper bounds. Finally, both
GP and network evolvers have quite limited ways of making new programs from previous
ones—they do not learn better program-making strategies [2].

The recent Optimal Ordered Problem Solver oops [12, 13] is an incremental program
searcher that tries to overcome these limitations by extending Levin’s nonincremental univer-
sal search [7]. OoPs solves one task after another, efficiently searching the space of programs
that compute solution candidates, including those programs that organize, manage, adapt and
reuse earlier acquired knowledge, and even programs that rewrite the search procedure itself.
This enables ooPs to incrementally learn to solve Hanoi instances for minimal solution sizes
exceeding 109 moves [13].

Below we will first review essential background and basic concepts, then we will describe
the first application of 0OPS to virtual robotics in POMDPs [6] with huge state/action spaces.
Robotics is of particular interest as it typically involves very non-homogeneous programs
consisting of both fast "thinking actions” (such as those computing the name of the next
action) and slow actions in the “real” world (such as executions of robot movements).

2 Optimal Ordered Problem Solver OOPS

Space limits force us to refer the reader to [13] and especially [12] for full formal details. In
what follows we have to restrict ourselves to a basic OOPS overview.

A problem r is very broadly defined by a recursive procedure f, that takes as an input
any potential solution (a finite symbol string ¢ € C', where C represents a search space of
solution candidates) and outputs 1 if ¢ is a solution to r, and 0 otherwise. Typically the goal
is to find as quickly as possible some ¢ that solves r. (Later the search space will be a set of
control programs for a robot; the robot’s task may be to reach a given physical location.)

Define a prior belief or probability distribution P on a finite or infinite set of programs
for a given computer. P represents the searcher’s initial bias (e.g., P could be based on
program length, or on a probabilistic syntax diagram). A bias-optimal searcher will not spend
more time on any solution candidate than it deserves, namely, not more than the candidate’s
probability times the total search time:

Definition 2.1 (BIAS-OPTIMAL SEARCHERS). Let R be a problem class, C be a search space
of solution candidates (where any problem r € R should have a solution in C), P(q | r) be
a task-dependent bias in the form of conditional probability distributions on the candidates
q € C. Suppose that we also have a predefined procedure that creates and tests any given
g onany r € R within time ¢(q, r) (typically unknown in advance). Then a searcher is n-
bias-optimal (n > 1) if for any maximal total search time T, > 0 it is guaranteed to solve
any problem r € R if it has a solution p € C satisfying t(p,r) < P(p | r) Tiota/n- It 1S
bias-optimal if n = 1.

Therefore the most probable candidates should get the lion’s share of the total search time,
in a way that precisely reflects the initial bias.

How OOPS solves the first task. OoOPs is fed a sequence of tasks. The first task is solved
by invoking near-bias-optimal LSEARCH as follows (we notationally suppress the conditional
dependency on the current task); compare [7, 16, 14, 9, 5]:



Method 2.1 (LSEARCH). Inthe i-th phase (i = 1,2, 3,...) test all programs ¢ with runtime
(including testing time) < T - P(q) (where T := 2) until the task is solved.

Note that the method is the asymptotically fastest method: Given some problem class, if
some unknown optimal program p requires f(k) steps to solve a problem instance of size
k, then LSEARCH will need at most O(f(k)/P(p)) = O(f(k)) steps — the constant factor
1/P(p) does not depend on k.

Time-optimal backtracking for resource-limited computers. While LSEARCH was
originally described for universal Turing machines with unlimited storage, oops actually in-
vokes a recursive procedure [12, 13] for time-optimal planning and backtracking in program
space to perform efficient storage management on realistic, limited computers. This proce-
dure essentially conducts a depth-first search in program space. The branches of the search
tree are program prefixes modifying some internal storage holding the current state of net-
work and environment. Backtracking (partial resets of state modifications) is triggered once
the runtime of the current prefix on the current task exceeds the current time limit multiplied
by the prefix probability. That is, during program runtime we need to save parts of the in-
termediate storage states on a stack such that backtracking can restore them when necessary.
See [13, 12] for details.

Oops also allows for the possibility that the current task actually is a set of tasks to be
solved simultaneously by the same program, with separate task-specific storages or tapes.

OOPS vs plain Lsearch. Note that LSEARCH by itself neglects one potential source of
speed-up: it is nonincremental in the sense that it does not attempt to minimize its constant
slowdown factor O(1/P(p)) by exploiting experience collected in previous searches for so-
lutions to earlier tasks. It simply ignores the constant — from an asymptotic point of view,
incremental search does not buy anything. Oops, however, solves subsequent tasks by using
experience with previous tasks to greatly reduce these constants in a bias-optimal way, as will
be seen next.

How OOPS solves the remaining tasks. Once the first task set is solved we try to solve the
next. Unlike plain LSEARCH, oops will time-optimally reduce the ominous constant factor
by reusing solutions to previous problems in computable ways, wherever this is profitable.
This can greatly accelerate the search for new solutions [12, 13]. The basic ideas are as
follows.

Freezing and incremental search. Whenever the current task or task set is solved, the
corresponding program gets frozen (its storage space becomes non-writeable) such that it can
be copy-edited and/or invoked as a subprogram by programs tested in later program searches.

Metalearning. We also allow program prefixes to temporarily rewrite the probability dis-
tribution on their suffixes, thus essentially rewriting the search procedure itself based on pre-
vious experience. That is, we metasearch for better search procedures with better constant
factors. This can greatly accelerate the learning of new tasks [13, 12].

How OOPS spends its time. Given a new task, 0oPs spends half the total search time
on a variant of LSEARCH that searches only among self-delimiting [8, 3] programs starting
with the most recently frozen code. It turns out that it is sufficient here to test only on the new
task, never on previous tasks, even when we are looking for a universal solver for all tasks
in the sequence. The rest of the time is spent on fresh programs starting right after the most
recently frozen code. When we are looking for a universal solver, however, we must test such
fresh programs on all previous tasks [12, 13].



Optimality of OOPS. O0FPs is essentially 8-bias-optimal (see Def. 2.1), given the initial
bias and frozen solutions to previous tasks [12, 13]. Therefore 00OPs can solve difficult tasks
unsolvable by traditional reinforcement learners and Al planners [13].

Summary. OopPs essentially allocates part of the total search time for a new problem
to programs that exploit previous solutions in computable ways. If the new problem can be
solved faster by copy-editing / invoking previous code than by solving the new problem from
scratch, then oops will discover this and profit thereof. If not, then at least it will not be
significantly slowed down by the previous solutions—Oops will remain 8-bias-optimal.

3 Applications to Snake Robots

We connected oops to the VORTEX? (tm) 3D physics simulation environment. VORTEX
allows for realistic physics modelling, including gravity, friction, slipping and collisions.

Consider Figure 1. Initially a snake-like robot hovers 1m (in z direction) above an infinite
(x,y) plane, with its tail (smallest x coordinate) right above the origin (0,0). It consists of three
segments, each 4m long, separated by 1m, connected by two virtual hinge-like actuators, both
working within the same plane (initially perpendicular to the ground). The snake’s current
position is defined as the position of the nose tip. By applying forces to its actuators the
snake can modify its shape and try to move. The continous state/action space is huge when
compared to those of many previous reinforcement learning test problems [6]. The space of
parameterized control actions is very large as well (see Section 3.1). The snake robot’s n-th
task (n =1,2,...)Is:

a. After being released, land on the ground without tumbling aside (the centers of mass of
the snake segments are not perfectly aligned, hence inaccurate movements may topple the
snake and render it helpless).

b. Crawl / jump / move at least a distance of 2 - (1m + dy.;) away from the origin, where
dpest 1S the length of the longest walk so far.

We stop creating new tasks as soon as the snake has covered a distance of 100m.

3.1 Language / Instructions

For the experiments we wrote a miniature multi-tasking operating system and an interpreter
for an exemplary, stack-based, universal programming language inspired by FORTH [10],
whose disciples praise its beauty and the compactness of its programs. In fact, to demonstrate
the system’s versatility, we used exactly the same set-up that was used for quite different tasks
described recently [12, 13]. Since we are dealing with an incremental optimization task we
need only one task-specific storage or tape. The tape holds various modifiable stack-like data
structures represented as sequences of integers, including a data stack ds (with stack pointer
dp) for function arguments, an auxiliary data stack Ds, a function stack fns of entries de-
scribing (possibly recursive) functions defined by the system itself, a callstack cs (with stack
pointer cp and top entry cs[ep]) for calling functions, where the local variable cs[cp].ip is
the current instruction pointer, and the base pointer cs|cp|.dp points into ds below the values
considered as arguments of the most recent function call: Any instruction of the form inst
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(1, ..., x,) expects its n arguments on top of ds, and replaces them by its return values. Ille-
gal use of any instruction will cause the currently tested program prefix to halt. In particular,
it is illegal to set variables (such as stack pointers or instruction pointers) to values outside
their prewired ranges, or to pop empty stacks, or to divide by 0, or to call nonexistent func-
tions, or to change probabilities of nonexistent tokens. Oops will interrupt prefixes as soon
as their runtime exceeds 7" - P (see Method 2.1).

General Instructions. We defined more than 80 instructions of a general purpose lan-
guage, essentially the same as those used for quite different tasks [13, 12]. Instructions in-
clude oldq(n) for calling the n-th previously found program ¢™, or getq(n) for making a copy
of ¢ on stack ds (e.g., to edit it with additional instructions). Lack of space prohibits an
explanation of all the instructions — see [12]. Here we have to limit ourselves to a few, es-
pecially those appearing in solutions found in the experiments, using readable names instead
of the numbers that represent them [12, 13]: Instruction c1() returns constant 1. Similarly for
c2(), ..., €9(). m1(), ..., m9() return negative constants -1,...,-9. pip(n) pops the next ip value n
from stack; jmp1(c, n) pops two values ¢, n and sets instruction pointer ip equal ton if ¢ > 0
(conditional jump); add(x,y) returns x + y; sub(x,y) returns x — y; dec(x) returns = — 1; neg(x)
returns —z; by2(x) returns 2x; grt(x,y) returns 1 if = > y, otherwise 0; cpn(n) copies the n
topmost ds entries onto the top of ds, increasing dp by n; cpnb(n) copies n ds entries above
the cs[cp].dp-th ds entry onto the top of ds; exec(n) interprets n as the number of an instruc-
tion and executes it; bsf(n) considers the entries on stack ds above its cs[cp].dp + n-th entry
as code and uses callstack cs to call this code (OOPSs executes code one instruction at a time;
the instruction ret() causes a return to the address of the next instruction right after the calling
instruction). Given n input arguments on ds, instruction defnp() pushes onto ds the beginning
of a definition of a procedure with n inputs; this procedure returns if its topmost input is 0,
and otherwise decrements it. calltp() pushes onto ds code for a call of the most recently self-
defined function / procedure. Both defnp and callp also push code that makes a fresh copy
of the inputs of the most recently defined code, expected on top of ds. endnp() pushes code
for returning from the current call, then calls the code generated so far on stack ds above
the n inputs, applying the code to a copy of the inputs on top of ds. All instructions between
two got are pushed on to the data stack, without being executed. boostq(i) sequentially goes
through all tokens of the i-th self-discovered frozen program, boosting each token’s proba-
bility by adding n, to its enumerator and also to the denominator shared by all instruction
probabilities—the denominator and all numerators are stored on the tape and can be modi-
fied by the currently tested prefix, which can thus rewrite the search procedure on its suffixes
(metasearching).

Snake-specific instructions. Now we add domain-specific instructions. The instruction
ApplyForces (m,n) pops two numbers from the top of ds and interprets them as forces for the
snake’s two actuators. The forces are applied in the VORTEX 3D physics simulation; then we
wait until the snake has stopped to move (checked via internal VORTEX flag) or until oops
interrupts because the current prefix test has already consumed too much time.

Since the actuator space is 2-dimensional, we also add instructions for dealing with 2-
dimensional vector data: mul2 (z1, z2,y1,y2) pops 4 values z, xs, y1, yo Off ds and pushes
(returns) 2 values, namely, the products x;x5 and y,y». Similarly, add2 (z4, x9, y1, y2) returns
(x1 + T, y1 + yo2); SUD2 (x1, 29, y1,yo) retUMS (x; — xo,y1 — y2); NEY2 (zq,x2) returns
(—x1, —x5), pushone2 () returns the constant vector (1, 1).

Probabilistic Bias. Of course, 0oPs tracks the computation time consumed by all in-
structions, including the substantial time spent in the realistic physics simulation. For ex-



IP  OC INSTRUCTION DATA STACK I[P OC INSTRUCTION DATA STACK

38 85 CALLTP 15 82 qort 33
15 82 qot 16 33 TOPF 33
16 33 TOPF 17 34 DOF 3333
17 34 DOF 33 18 31 INTPF 34 3333
18 31 |INTPF 34 33 19 49 cPN 3134 33 33
19 49 cPN 313433 20 82 oot 49 31 34 33 33
20 82 qort 49 31 34 33 21 37 RET 49 31 34 3333
21 37 RET 49 31 34 33 3 1 APPLYFORCES 493134 33 33
39 1 APPLYFORCES 49313433 36 39 NEG 34 3333
40 74 c6 34 33 37 1 APPLY FORCES -34 3333
41 46 JvPl 634 33 38 85 CALLTP 33
34 85 CALLTP 33 15 82 oot 33

TABLE 1: PROGRAM TRACE SHOWING INSTRUCTION OPCODES (OC) AND EVOLVING DATA STACK CON-
TENTS (RIGHT), AS THE SNAKE SUCCESSFULLY MOVES FORWARD (THE SEPARATE CALL STACK IS NOT
SHOWN FOR LACK OF SPACE).

ample, as soon as the current 7" - P limit is exceeded (see Method 2.1) during some Ap-
plyForces (m,n) instruction, oops interrupts and backtracks. We assign roughly equal prob-
abilities to equal-sized programs containing at least one ApplyForces instruction, and near-
zero probability to all other programs. We do this by starting with the maximum entropy
distribution on the 84 instructions (all 84 numerators set to 1) and then acting as if the ex-
ecution of an ApplyForces instruction in VORTEX was V' = 10000 times faster than it re-
ally is. Let pr, ;, denote a non-empty program with £ instructions including n ApplyForce’s,
then P(prnx)/P(prox) = V - n/k + (k — n)/k. That is, for program size k& < 10 in-
structions we ensure for n > 0 that P(pr, ) > 1000 - P(proy), and for 0 < ny,no that
1 < P(pro, k) /P(pro,x) < 10.

4 Experimental Results

After one hour on a PC (1.7 GHz Intel XEON) oopPs had solved 7 harder and harder tasks.
The solution of the final task moved the snake beyond the 100m mark. In the experiment we
used the same initial frozen code setup as in the previous work [12, 13].

The solution of the 1st task was found after only 890 program tests: the somewhat bizarre
program (defnp ApplyForces) happened to move the snake for 2m (7" = 262, 144).

The 2nd task (6m walk) was solved by the program prolongation (defnp ApplyForces neg
ApplyForces).

The 3rd task (14m) was solved much later by a fresh additon to the total code: (calltp
ApplyForces ¢6 jmpl) (T=34,359,738,368). This program invokes and reuses parts of the
previous code, and successfully solved the remaining tasks: 5th task (30m, T=2,048); 6th
task (62m, T=4,096); 7th task (126m, T=8,192).

The complete code seems strange as it relies on the calltp instruction originally intended
to facilitate the automated editing of code by pushing the code of a subroutine on the data
stack. Consider Table 4, where we use bold font for instruction arguments and italic font
for instruction outputs in the next line. Instruction calltpsgs (subscripts denote instruction
addresses) pushes 4 integers onto the stack: it is a pre-wired subroutine (useful for certain



Figure 1: 10 snapshots (ordered like text) of walking / jumping snake after learning —compare instruction
pointer ip in Table 4. 1: Initial position. 2, 3: ApplyForces executed at ip = 39 and 35. 3, 4, 5: ip moves
up to address 37. 7, 8: until ip = 39. 9, 10: correspond to ip = 35, 37. The last picture stems from ongoing
experiments with a 4-segment snake.

types of recursive function calls) whose definition is reflected in the trace between qot
and rets;. Then the two topmost stack elements become the input to Apply Forcessg. The
remaining integer and the result of instruction c6,, become the arguments of the conditional
jump jmp1,; which pops two arguments and interprets the second one as the next address to
jump to, since 6 is a positive number. The following call to calltps, and Apply Forcesss IS
like the one just described. It is followed by negss which forces the snake into a Z-like shape
via the final ApplyForcess;, which closes an infinite loop. The first 10 pictures of Figure 1
show snake snapshots corresponding to this trace.

Conclusions

To find desirable trajectories of robot movements we used the Optimal Ordered Problem
Solver to search in a very large space of general trajectory-computing programs written in
a universal programming language with more than 80 instructions. The programs are highly
heterogeneous, involving both very fast control decisions and very slow action execution
in a virtual world with a realistic physics simulation and a huge state space. Still, oops
bias-optimally allocates limited search time to programs computing solution candidates for a



sequence of harder and harder tasks, and discovers problem-solving programs that are a bit
opaque and difficult to understand but successful.

Of course, the initial bias is crucial, as always. But given any initial bias in the form

of an initial programming language, OOPS represents a bias-optimal way of solving robotic
control and planning tasks. This encourages us in our ongoing research to apply oops to
more complex robots living in more complex environments. In particular, we are developing
biases that are more robot-specific than the one embodied by our current system.
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