Kalman filters improve LSTM network
performance in problems unsolvable by
traditional recurrent nets*

Juan Antonio Pérez-Ortiz »*, Felix A. Gers®, Douglas Eck¢,
Jurgen Schmidhuber ©
aDepartament de Llenguatges i Sistemes Informatics, Universitat d’Alacant,
E-03071 Alacant, Spain
b Mantik Bioinformatik GmbH, Neue Gruenstrasse 18, 10179 Berlin, Germany
¢IDSIA, Galleria 2, 6928 Manno, Switzerland

Running title: Kalman filters improve LSTM performance
Section: Mathematical and computational analysis

* This work was supported by the Generalitat Valenciana grant FPI-99-14-268, by
the Spanish Comisién Interministerial de Ciencia y Tecnologia grant TIC2000-1599-
C02-02, and by the Swiss National Foundation grant 2100-49°144.96.

* Corresponding author. Tel.: +34-965909335; fax: +34-965909326.

E-mail address: japerez@dlsi.ua.es (J.A. Pérez-Ortiz).

Preprint submitted to Elsevier Science 19 March 2002

Kalman filters improve LSTM network
performance in problems unsolvable by
traditional recurrent nets

Abstract

The Long Short-Term Memory (LSTM) network trained by gradient descent solves
difficult problems which traditional recurrent neural networks in general cannot.
We have recently observed that the decoupled extended Kalman filter training al-
gorithm allows for even better performance, reducing significantly the number of
training steps when compared to the original gradient descent training algorithm.
In this paper we present a set of experiments which are unsolvable by classical re-
current networks but which are solved elegantly and robustly and quickly by LSTM
combined with Kalman filters.

Key words: Long Short-Term Memory; Recurrent neural networks; Decoupled
extended Kalman filter; Online prediction; Context sensitive language inference

Preprint submitted to Elsevier Science 19 March 2002

1 Introduction

The decoupled extended Kalman filter (DEKF) (Puskorius and Feldkamp,
1994; Haykin, 2001) has been used successfully to optimize the training of
recurrent neural networks (RNNs). Typically DEKF requires fewer training
steps and yields better generalization than the usual gradient descent algo-
rithms. In the DEKF framework, learning is treated as a filtering problem in
which the optimum weights of the network are estimated efficiently in a recur-
sive fashion. The algorithm is especially suitable for online learning situations,
where weights are adjusted continuously, although it can be applied to batch
training as well (Feldkamp and Puskorius, 1994).

With DEKF it should be possible for a RNN to learn optimal weights for many
difficult problems. In principle, a RNN (Elman, 1990; Robinson and Fallside,
1991; Williams and Zipser, 1992; Schmidhuber, 1992; Pearlmutter, 1995) is
able to instantiate arbitrary temporal dynamics. This suggests great potential
for solving hard problems that cannot be dealt with using feedforward net-
works. In practice, however, RNNs are unable to bridge long time lags between
important events: errors flowing backward in time either decay exponentially
or blow up (Hochreiter et al., 2001a). These so-called vanishing gradients limit
traditional RNNs to problems having only short time lags (where one could
also use feedforward networks instead of RNNs). A recent novel RNN called
Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) over-
comes this fundamental long-term dependency problem by enforcing constant
error flow. That’s why LSTM learns previously unlearnable solutions to nu-
merous tasks (Hochreiter and Schmidhuber, 1997; Gers et al., 2000; Gers and
Schmidhuber, 2001), including tasks that require storing relevant events for
more than 1000 subsequent discrete time steps without the help of any short
training sequences. LSTM’s applicability is broad. For instance, it has recently
been employed as a powerful function approximator for reinforcement learning
(RL) in partially observable environments (Bakker, 2001). In situations where
the optimal next action depends on long-term memory of old sensory inputs,
traditional RL fails while RL with LSTM function approximation succeeds.
LSTM also builds the basis of the first working gradient-based metalearner
(Hochreiter et al., 2001b) — a very recent machine that can learn fast learn-
ing algorithms for nontrivial classes of functions.

All previous LSTM implementations have used a form of gradient descent to
adjust the weights of the network. In this paper we apply the DEKF training
algorithm to the LSTM architecture for the first time; we compare experimen-
tal results obtained with the gradient descent algorithm to those of DEKF,
and also comment on much worse results obtained with traditional RNNs.

Section 2 introduces the LSTM architecture. Section 3 describes the learn-

Giaal)
Lo
AAVASi

Fig. 1. A LSTM memory block with one cell. If the memory block had two or more
cells, the three gates (below; from left to right: input gate, forget gate, and output
gate) would be shared by all of them.

\|/

ing algorithms to be considered in the paper, namely, gradient descent and
DEKEF. Next, in Section 4 the experiments are discussed in detail; two differ-
ent experiments are presented: online prediction over symbolic sequences with
long-term dependencies, and inference of a context sensitive language. Finally,
the paper concludes with a short discussion.

2 Long Short-Term Memory

A main distinction between LSTM (Hochreiter and Schmidhuber, 1997) and
traditional RNNs (Elman, 1990; Robinson and Fallside, 1991; Pearlmutter,
1995) is LSTM’s use of a memory cell containing a self-connected linear unit.
This so-called constant error carousel (CEC) enforces constant error flow and
overcomes a fundamental problem plaguing previous RNNs: it prevents error
signals from decaying quickly as they flow back in time. At any point in time,
errors in the network (whether from cells or from gates, described below) are
used to drive weight changes. However, only the CECs keep track of error
as it flows back in time; errors elsewhere are truncated (errors outside CECs
vanish exponentially fast anyway, just like in traditional RNNs). By tracking
long-timescale dependencies in the CECs, LSTM is able to bridge huge time
lags (1000 discrete time steps and more) between relevant events, while tra-
ditional RNNs already fail to learn in the presence of 10 step time lags, even
with complex update algorithms such as real-time recurrent learning (Williams
and Zipser, 1989; Robinson and Fallside, 1991) (RTRL) or backpropagation
through time (Williams and Peng, 1990) (BPTT). But note that even time
window approaches based on feedforward networks can deal with 10 step time
lags!

In general, however, it is not sufficient to simply add linear counters to a

ylt]

memory
block

with «
single @

cell

ult]

Fig. 2. A single-input single-output three-layer LSTM architecture with only one
memory block with one single cell within (ny; = ng = 1). All the connections except
for the biases are shown.

RNN. Without some method of protecting the contents of these counters,
such a network could quickly diverge. For this reason, LSTM CECs are ar-
ranged in memory blocks of cells that control the flow of information through
the CECs. Though LSTM could in principle work with any differentiable pro-
tective mechanism, existing implementations use a small set of multiplicative
gates: an input gate learns to protect the CECs from irrelevant inputs, an
output gate learns to turn off a cell block that is generating irrelevant output,
and a forget gate allows CECs to reset themselves to zero when necessary.
See (Gers et al., 2000) for a detailed description of LSTM with input, output
and forget gates. Figure 1 shows a memory block with a single cell; this figure
will prove useful for understanding the notation to be used throughout the
paper. Memory blocks form the hidden layer of a LSTM network as shown in
Figure 2, biases are not shown.

Following is a brief description of the notation to be used throughout the
paper. We denote with ny, ny, ny and ne the number of input neurons,
output neurons, memory blocks and cells per block, respectively. The input at
time step ¢ is denoted with vector u(t) and the corresponding output of the
network with y(¢). The v-th cell in the i-th block is represented by cV.

When representing the weights, superscripts indicate the computation in which
the weight is involved: the “p,¢” in W} indicates that the weight is used to
compute the activation of a forget gate (¢) from a cell (c); the “out” in W"* (a
bias) indicates that it is used to compute an output gate. Subscripts designate

the particular units involved and run parallel to superscripts.

2.1 Forward pass

The activation of the input gate in the jth memory block, yiy;, is computed
as:

nyM ne ny .]

et (1) =D ";f Yer (= 1)+ D Wit um(t) + W;" (1)
i=1v=1 m=1

Yin, (t) = O (netiy; (1)) (2)

where € is the squashing function for the gates in the network (usually a
logistic sigmoid function with range (0,1)). Similarly, forget gate activation
¥, is obtained by computing:

np Ne

net,, ZZ foo Y (t — 1) ZW‘” t)+ W7 (3)
Yo, (1) = 9(%% (t)) (4)

The weights involved in the forget gates are usually initialized so that y,(0)
is close to 1; with this initialization, cells do not forget anything until they
learn how to forget. The output gate activation y,,; is computed as follows:

np nNe

netoutj (t) = Z Z th'?::l;,c t — 1 + Z I/VOut U Wout (5)
i=1v=1

youtj (t) == o(netoutj (t)) (6)

The internal state of memory cell s. is calculated by adding the squashed
gated input to the state at time ¢ — 1 multiplied by the corresponding forget
gate:

Sy (6) = Wiy (1) s (£ — 1) + 3, (1) 9 (metey (1)))

where g is a squashing function and

ny ne

oty (1) =35 3 Wy syt = 1)+ 32 Wi un(t) + W5 ©)

i=1 k=1

with Sc})(O) = 0 for all 7 and v. The cell output y, is computed by squashing
the cell state and gating (multiplying) it by the activation of the output gate:

Ve (1) = Youty (1) B () (9)

where h is a squashing function. Finally, if we allow direct shortcut connec-
tions between input and output layers, the global output of the network y is
calculated by:

neta(t) = 3o > WS v (6 + 30 Wi un(t) + WY (10)
j=lv=1 m=1
Y (t) = f(nety(t)) (11)

where f is again a suitable squashing function.

Recently peephole connections were added to the LSTM model (Gers and
Schmidhuber, 2001). Peephole connections overcome a limitation of traditional
LSTM, namely, the lack of direct connections from the CEC to the gates, which
are supposed to control it. This new set of weighted connections links each
CEC to the corresponding gates. Some of the experiments in Section 4 will
use LSTM networks with peephole connections.

2.2 Gradient computation in the backward pass

In the backward pass the partial derivatives of the overall nonlinearity y(¢)
with respect to each weight are calculated. These derivatives are 0y;(t)/0W;(t)
with 4 =1,...,ny and W, denoting a generic synaptic weight.

Lack of space prohibits a complete and self-contained description of the way of
computing the partial derivatives for LSTM (we refer the reader to the paper
by Gers et al. (2000) for details). Essentially, it is an efficient fusion of slightly
modified, truncated BPTT and a customized version of RTRL.

Truncation ensures that errors cannot re-enter cells. This in turn ensures con-
stant error flow through the CEC in the memory cell avoiding the vanishing
gradient problem: the influence of an earlier event on the current output of a
traditional RNN decreases exponentially with time.

Consider a simple single-input single-output LSTM network, like that in Fig-
ure 2, with just one cell state s; by following the chain rule, the influence of
input «(1) on current output y(¢) may be written as:

(12)

The vanishing gradient problem happens due to the fact that the product in
(12) goes to zero very quickly (Hochreiter et al., 2001a), that is, the error

vanishes, and nothing can be learned in acceptable time. The way in which
gradient is computed in LSTM architecture surpasses the problem by enforcing

0s(1)

o5l —1) (13)

for all [. Therefore, the error flow within the CECs is constant, and long-term
dependencies may be taken into account. Equation (13) represents the key to
LSTM’s success (Hochreiter and Schmidhuber, 1997). Most LSTM networks
implement (13) with a linear unit having a 1.0 self connection, but other alter-
natives may also be of interest. The nature of the nonlinear gates surrounding
and protecting the CECs may vary as well.

3 Training algorithms
3.1 Gradient descent

The gradient descent algorithm applies a correction AW,(t) to the weight
W;(t) which is proportional to the partial derivative OE(t)/0W,(t), where E
is the objective function, here the usual quadratic error function,

1 X

E= 3 3o (dilt) — yi(t))? (14)

=1

and d;(t) is the target or desired response for the ith output neuron at time
t. The contribution at time ¢ to W; update is defined by

(15)

where « is the learning rate parameter.

When applied to LSTM, gradient descent uses not more than O(1) computa-
tions per connection and time step, thus being local in space and time (Schmid-
huber, 1989). All previous papers concerning LSTM used the gradient descent
learning algorithm; in this paper we consider for the first time the DEKF
training algorithm as well.

3.2 Kalman filters

Gradient descent algorithms, such as the original LSTM training algorithm,
are usually slower than necessary when applied to time series because they
depend on instantaneous estimations of the gradient: the derivatives of the
error function with respect to the weights to be adjusted only take into account
the distance between the current output and the corresponding target, using
no history information for weight updating.

The DEKF (Puskorius and Feldkamp, 1994; Haykin, 1999) overcomes this lim-
itation. It considers training as an optimal filtering problem, recursively and
efficiently computing a solution to the least-squares problem of finding the
curve of best fit for a given set of data in terms of minimizing the average
distance between data and curve. At any given time step, all the information
supplied to the network up until now is used, including all derivatives com-
puted since the first iteration of the learning process. However, computation
is done such that only the results from the previous step need to be stored.

Lack of space prohibits a complete description of DEKF. We refer the reader
to previous citations for details. In what follows, we will limit ourselves to a
brief overview. The extended Kalman filter is used for training neural networks
(recurrent or not) by assuming that the optimum setting of the weights is sta-
tionary. However, when considering all the weights of the network together, the
resulting matrices become so unmanageable (even for networks with moderate
sizes) that a node-decoupled version of the algorithm is usually used instead to
make the problem computationally tractable. The decoupled approach applies
the extended Kalman filter independently to each neuron in order to estimate
the optimum weights feeding it. By proceeding this way, only local interdepen-
dencies are considered. The equations for iteration ¢ of a DEKF minimizing
the typical quadratic error measure in (14) can be formulated as follows:

Gilt) = Kilt — 1)CT () |3 Co(OKs(t — 1)CT (1) + R(2) (16)
wi(t) = wi(t — 1) + Gy(t) [d(t) — y(1)] (17)
K;(t)=K;(t—1) - G:(t)C;)K;(t — 1) + Qi(?) (18)

where g is the number of neurons, i defines a particular neuron (1 < i < g),
and w; is a vector with all the weights leading to neuron 7. The difference
in (17) between the desired response d(¢) and the actual output vector of the
network y(¢) defines what is known as innovation.

Let n; denote the number of weights leading to neuron . Matrix G; computed
in (16) is an n; X ny matrix denoting the Kalman gain for neuron i. Matrix K;

computed in (18) is an n; X n; matrix denoting the error covariance matrix
for neuron i. Matrix Q; is the covariance matrix of artificial process noise
for neuron 7 and is used to overcome some divergence problems of the filter.
Matrix R is the covariance matrix of the measurement noise. Matrices K, Q
and R are initialized in a problem-specific manner. Finally, the Jacobian C;
is an ny X n; matrix containing the partial derivatives of the function defining
the output y of the network with respect to each weight leading to neuron ::

oy
Ow;y

oy
Owiy

0 520 -
() S) e

Combining DEKF with the LSTM architecture is straightforward. We consider
a group of weights for each neuron in LSTM, that is, a group for each different
gate, cell and output neuron, giving g = ny(nc + 3) + ny. At time step ¢ we
calculate the derivatives required for matrix C;(¢) as indicated in 2.2, and then
apply equations (16)—(18) in order to update weights w;(t).

It should be noted that DEKF’s time complexity (Haykin, 1999, p. 771) is
much larger than that of the gradient descent algorithm because DEKF not
only has to compute the same derivatives, but also many matrix operations
(including the inversion of the square matrix in (16) of size ny x ny) at
every time step. Thus, while original gradient descent LSTM consumes O(1)
resources per connection and time step (Schmidhuber, 1989), DEKF is not
local in time and space.

4 Experiments

We study LSTM’s performance with both learning algorithms, gradient de-
scent and DEKF, on two tasks that are unsolvable by traditional RNNs (El-
man, 1990; Robinson and Fallside, 1991; Pearlmutter, 1995).

4.0.0.1 Online learning. See Section 4.1. The next symbol of a symbolic
continual input stream generated from the difficult embedded Reber automa-
ton has to be predicted. The focus is on online learning, where the network
is forced to give in real time an output as correct as possible for the input

10

supplied at each time step. We investigate the number of symbols needed to
attain correct predictions during a large period of time.

4.0.0.2 Context sensitive language learning. See Section 4.2. Sen-
tences of regular languages are recognizable by finite state automata having
obvious RNN implementations. Most recent work on language learning with
RNNs has focused on them. Only few authors have tried to teach RNNs to
extract the rules of simple context free and context sensitive languages (CFLs
and CSLs) whose recognition requires the functional equivalent of a poten-
tially unlimited stack (Sun et al., 1993; Wiles and Elman, 1995; Boden and
Wiles, 2000). Some previous RNNs even failed to learn small CFL training sets
(Rodriguez and Wiles, 1998). Those that did not and those that even learned
small CSL training sets (Rodriguez et al., 1999; Boden and Wiles, 2000) failed
to extract the general rules and did not generalize well on substantially larger
test sets.

LSTM is the first network that does not suffer from such generalization prob-
lems (Gers and Schmidhuber, 2001). It clearly outperforms traditional RNNs
on all previous CFL and CSL benchmarks found in the literature. Stacks of
potentially unlimited size are automatically and naturally implemented by the
CECs.

Here we concentrate on the only CSL ever tried with RNNs, namely, a™b"c".
Traditional RNNs fail to generalize well on this simple CSL: Chalup and Blair
(1999) reported that a simple recurrent network trained with a hill-climbing
algorithm can learn the training set for n < 12, but they did not give general-
ization results. Boden and Wiles (2000) trained a sequential cascaded network
with BPTT; for a training set with n€{1,.., 10}, the best networks generalized
to ne{l,..,12} in 8% of the trials.

4.1 FEzxperiment 1: online prediction

In this experiment we use LSTM with forget gates to predict subsequent sym-
bols of a continual symbolic input stream (not segmented a priori into subse-
quences with clearly defined ends) with long-term dependencies. The focus is
on true online processing.

Gers et al. (2000) studied a similar problem; the difference between our ap-
proach and their related set-up is that they aborted the current input stream
as soon as the network made an error, then reset the network and continued
with a new input stream. In this way, the Gers et al. approach was like batch
learning. On the other hand, weight updates were executed after each symbol

11

S Reber
T Grammar [\
B E
E ‘
P Reber P
Grammar
v : ; , o
TU \recurrent connection for continual prediction 1

Fig. 3. Transition diagrams for standard (left) and embedded (right) Reber au-
tomata. The dashed line indicates the continual variant.

and, as a result, their attempt can be considered as half-way between online
and offline (batch) learning. Here we apply the same LSTM architecture to the
same kind of sequences, but with a pure online approach: there is only one sin-
gle input stream; learning continues even when the network makes mistakes;
and training and testing are not divided into separate phases.

4.1.1 Method

We use LSTM with forget gates to predict subsequent symbols in sequences
generated by the continual embedded Reber automaton (Smith and Zipser,
1989) shown in Figure 3. Due to existence of long-term dependencies, this
task is suitably difficult to show the power of both LSTM and DEKF. The

learning process is completely online.

We briefly review now how LSTM (in general, any neural network) can be
used to predict subsequent symbols in a sequence. Consider an alphabet ¥ =
o1,...,0px and a temporal sequence r(1),...,7(t), ... The number of neurons
in the input and output layers equals the size of the alphabet, |X|. The symbols
in 3, when considered as inputs or targets, are coded by means of local coding,
that is, o; is coded with a unary vector where only the i-th component is
different from zero.

At time step t the symbol 7(¢) from the sequence is coded in the input vector
u(t) by means of local coding and presented to the network. Then the forward
pass takes place, taking into account previous events represented by activations
of the network’s recurrent hidden units. Finally the output vector y(¢) is
obtained and normalized such that all its components add up to one. Now
y;(t) is interpreted as the probability of the next symbol being o;. Finally the
next observed symbol (¢ + 1) is locally encoded as vector d(¢) and is used as
the target for updating the weights in the subsequent backward pass.

4.1.2 Network topology and parameters

Following Gers et al. (2000), the LSTM network has 4 memory blocks with 2
cells each. The size of the alphabet of the automaton is [X| = 7, so we consider

12

an LSTM network with 7 neurons in the input and output layers. Bias weights
to input and output gates are initialized blockwise: —0.5 for the first block, —1
for the second, —1.5 for the third, and so on. Forget gate biases are initialized
with symmetric values: 0.5 for the first block, 1 for the second, and so on.
The rest of the weights are randomly taken from a uniform distribution in
[—0.2,0.2].

The squashing function g is set to g(x) = tanh(z) with range (—1,1), h(z) is
set to the identity function, and the squashing function of the gates is set to
the logistic sigmoid function f(z) = (1 + e~*)~! with range (0, 1).

For the gradient descent training algorithm we set the learning rate to 0.5,
without using an additional momentum term. In case of DEKF, the values
for the free parameters of the algorithm suggested by Haykin (1999, p. 771)
turned out to be adequate for this task as well: the covariance matrix of the
measurement noise is annealed from 100 to 3; the covariance matrix of artificial
process noise is annealed from 1072 to 107% the elements of the initial error
covariance matrix are set to 100.

4.1.8 Training and testing

We count the number of symbols needed by LSTM to attain error-free predic-
tions for at least 1000 subsequent symbols; here “error-free” means that the
symbol corresponding to the winner neuron in the network output is one of the
possible transition symbols, given the current state of the Reber automaton.

Gers et al. (2000) considered longer error-free sequences, but learning was not
truly online, and the networks were tested with frozen weights. Therefore,
although the criterion for sustainable prediction was stringent, the learning
was easier in principle. On the other hand, when working online, the recurring
presence of particular subsequences usually makes the network forget past
history and trust more recent observations instead. This is what one would
expect from an online model, which is supposed to deal correctly with non-
stationary environments.

After an initial training period, LSTM usually makes only few mistakes and
tends to keep making correct predictions. To obtain a tolerant measure of
prediction quality we measure the time at which the N-th error takes place
after the first 1000 subsequent error-free predictions: here we consider two
possible values for N, namely, 1 and 10.

13

Table 1

Time steps required by online LSTM (trained with the original learning algo-
rithm) to achieve 1000 subsequent correct predictions (“sustainable prediction”).
Also shown are the number of steps before a single error and before 10 errors.
Network 5 failed to make a sustainable prediction before time step 1000000.

‘ Net ‘ Sustainable prediction ‘ Next error ‘ Next 10 errors ‘

1 39229 143563 178229

2 102812 111442 144846

3 53730 104163 141801

4 54565 58936 75666

5 1000000™ - -

6 111483 113715 136038

7 197748 199445 235387

8 54629 123565 123595

9 85707 86742 92312

4.1.4 Results

4.1.4.1 LSTM with gradient descent results. Table 1 shows the re-
sults for 9 different sequences with 9 independently initialized LSTM networks
trained by the original gradient descent training algorithm. In one case (row 5)
no correct prediction sequences (for 1000 symbols in a row) are found before
the 1000000-th sequence symbol; this is indicated in the table by 1000000".

It should be noted that the average number of symbols required for learning
to predict accurately in real-time (thousands of symbols) is much smaller than
the number of symbols required in Gers et al.’s (Gers et al., 1999) offline set-up
(millions of symbols). This deserves more study.

4.1.4.2 LSTM with DEKF results. Performance is better using the
DEKF training algorithm. The time required to achieve 1000 error-free pre-
dictions in a row is generally lower than with the original training algorithm,
indicating faster convergence (compare Table 2). However the number of sym-
bols processed before the 10-th error is also lower, indicating faster perfor-
mance degradation. The DEKF seems to increase online learning speed while
at the same time reducing the long-term memory capabilities of LSTM. There
are three remarkable cases (rows 2, 6 and 9 in Table 2), however, where a
very long subsequence (hundreds of thousands of symbols) is necessary for the
10-th error to appear.

4.1.4.3 Traditional RNNs results. Experiments with traditional RTRL-
trained (Williams and Zipser, 1989) RNNs (such as the simple recurrent
net (Elman, 1990) or the recurrent error propagation network (Robinson and

14

Table 2

Time steps required by online LSTM (trained by DEKF) to achieve 1000 subsequent
correct predictions (“sustainable prediction”). Also shown are the number of steps
before a single error and before 10 errors. Network 8 failed to make a sustainable
prediction before time step 1000000. Row 6 shows a particularly good result: only
3 errors occur before the 1000000-th sequence symbol.

‘ Net ‘ Sustainable prediction ‘ Next error Next 10 errors ‘

1 29304 30347 30953

2 19758 25488 322980

3 20487 22235 24106

4 | 26175 27542 33253

5 18015 19365 22241

6 16667 29826 1000000™
7| 23277 24796 26664

8 1000000 - -

9 29742 31535 594117

Fallside, 1991)) demonstrated that they are unable to obtain sustainable error-
free predictions for 1000 subsequent symbols, even after extremely long train-
ing times. Even as few as 100 subsequent correct predictions were extremely
rare. The DEKF applied to these architectures, however, did allow for sus-
tainable error-free predictions. But it always required many more than 100000
symbols (far more than LSTM).

4.1.5 Analysis.

Study of the evolution of gate and state activations revealed that online LSTM
learns a behavior similar to the one observed in previous experiments which
were not online (Gers et al., 2000, Sect. 4.4); that is, one memory block
specializes in bridging long-time information (see Figure 4), while the others
track short-term changes in the input only. Common to all memory blocks
is that they learn to reset themselves in appropriate ways, by making the
forget gate activation go to zero. This behaviour was common to both training
algorithms.

4.2 Ezxperiment 2: context sensitive language learning

We use LSTM with forget gates and the recently introduced peephole connec-
tions to learn and generalize over the CSL a™b"c™.

15

-12-] -20-,F11{-15- -114101-15- -14-[-9-] -19-4{105-9- -0-
[0}
n
§ 10
e 3.Block, 1.Cell ——
= -10 # 3.Block, 2.Cell —
T PP TTP P TT TTT
=
g 1
o
©
S o5
o
© 0 ;
o
w T PP TTP P TT TTT

Symbol

Fig. 4. Top: internal states s. of the two cells of the block memorizing long-time
information during sequence prediction in an LSTM network trained on the embed-
ded Reber grammar task. The figure shows 170 successive symbols taken from an
error-free sequence. Long-time information is indicated by vertical lines labeled by
the symbols (P or T') to be stored until the sequence gets the left side of the au-
tomaton again. Bottom: simultaneous forget gate activations for the same memory
block.

4.2.1 Method

The network sequentially observes exemplary symbol strings of the given lan-
guage, presented one input symbol at a time. Following the traditional ap-
proach in the RNN literature we formulate the task as a prediction task. At
any given time step the target is to predict the possible next symbols, includ-
ing the end of string symbol T. When more than one symbol can occur in
the next step all possible symbols must be predicted, and none of the others.
Thus, e.g., for n = 3 the inputs and targets are:

Input: S a a a b b b ¢ ¢ c
Target: a/T a/b a/b a/b b b ¢ ¢ ¢ T

Every input sequence begins with the start symbol S. The empty string, con-
sisting of ST only, is considered part of the language. A string is accepted
when all predictions have been correct. Otherwise it is rejected.

This prediction task is equivalent to a classification task with the two classes
“accept” and “reject”, because the system will generate prediction errors for
all strings outside the language. A system has learned a given language up to
string size n once it is able to correctly predict all strings with size < n.

Symbols are encoded locally in m-dimensional vectors, where m is equal to
the number of symbols of the given language |X| plus one for either the start
symbol in the input or the end of string symbol in the output (m input units,
m output units, each standing for one of the symbols). +1 signifies that a

16

symbol is set and —1 that it is not set; the decision boundary for the network
output is 0.0.

4.2.2 Network topology and parameters

As stated before, we are using LSTM with forget gates and the recently in-
troduced peephole connections which link directly the CECs and the corre-
sponding gates.

The input units are fully connected to a hidden layer consisting of 2 mem-
ory blocks with 1 cell each. The cell outputs are fully connected to the cell
inputs, to all gates, and to the output units, which also have direct “short-
cut” connections from the input units. All gates, the cell itself and the output
unit are biased. The bias weights to input gate, forget gate and output gate
are initialized with —1.0, +2.0 and —2.0, respectively (precise initialization
is not critical here). All other weights are initialized randomly in the range
[—0.1,0.1]. The squashing functions ¢g and h are the identity function. The
squashing function of the output units is a sigmoid function with the range
(—2,2).

We use a network with 4 input and output units, and two memory blocks
(with one cell each), resulting 84 adjustable weights (72 unit-to-unit and 12
bias connections).

4.2.3 Training and testing

Training and testing alternate: after 1000 training sequences we freeze the
weights and run a test. Training and test sets incorporate all legal strings up
to length 3n. Only positive exemplars are presented. Training is stopped once
all training sequences have been accepted. All results are averages over 10
independently trained networks with different weight initializations (the same
for each experiment). The generalization set is the largest accepted test set.

We study LSTM’s behavior in response to two kinds of training sets: (a) with
n € {1,.,N}, and (b) with n € {N — 1, N}. For large values of N, case (b)
is much harder because there is no support from short (and easier to learn)
strings. In this paper we focus on n € {1,..,10} and n € {20, 21}. We test all
sets with ne{L,... M}, Le{l,..,N — 1}.

4.2.3.1 Weight updating with gradient descent. Weight changes are
made after each sequence. We apply either a constant learning rate or the
momentum algorithm (Plaut et al., 1986) with momentum parameter 0.99.

17

At most 107 training sequences are presented; we test with M € {N,..;500}
(sequences of length < 1500).

4.2.3.2 Weight updating with DEKF The online nature of the DEKF-
LSTM algorithm forces weights to be updated after each symbol presentation.
The parameters of the algorithm are set as follows: the covariance matrix
of the measurement noise is annealed from 100 to 1; the covariance matrix of
artificial process noise is set to 0.005 (unless specified otherwise). These values
gave good results in preliminary experiments, but they are not critical and
there is a large range of values which result in similar learning performance.
The influence of the remaining parameter, the initial error covariance matrix,

will be studied later. The maximum number of training sequences presented
is 10%; we test with M €{N,..,10000} (sequences of length < 30000).

4.2.4 LSTM with gradient descent results

When utilizing plain gradient descent, LSTM learns both training sets and
generalizes well. With a training set with n€{1,..,10} the best generalization
is n€{1,..,52} and the average generalization is n € {1,..,28}. A training set
with n €{1,..,40} is sufficient for generalization up to the tested maximum,
ne{l,..,500} (sequences of length up to 1500).

LSTM worked well for a wide range of learning rates (about three orders
of magnitude) as can be seen in Table 3. Use of the momentum algorithm
(Plaut et al., 1986) clearly helped to improve learning speed (allowing the
same range for the initial learning rate). The choice of learning rate did not
affect generalization performance (not reported in Table 3).

4.2.5 LSTM with DEKF results

The DEKF-LSTM combination significantly improves the results of the gradi-
ent descent algorithm. Very small training sets with n€{1,.., 10} are sufficient
for perfect generalization up to values of n€{1,..,2000} and more: one of the
experiments with § = 10? gave a generalization set with ne {1,..,10000}. We
ask the reader to briefly reflect on what this means: after a short training

phase the system worked so robustly and precisely that it saw the difference
between the strings, say, a®388p3888¢8888 and 888888888889

With training set n € {1,..,10} and § = 10 the average generalization set
was n€{1,..,434} (the best generalization was n€{1,..,2743}), whereas with
the original training algorithm it was n € {1,..,28}. What is more, training
is usually completed after only 2 - 10® training strings, whereas the original
algorithm needs a much larger number of strings.

18

Table 3

Results for CSL a™b"c" for training sets with n ranging from 1 to 10 and from
20 to 21, with various (initial) learning rates (10~%) with and without momentum
(momentum parameter 0.99). Shown (from left to right, for each set with constant
learning rate and with momentum) are the average number of training sequences
and the percentage of correct solutions once the training set was learned.

(1,..,10) (20,21)
Constant Momentum Constant Momentum

Train | % | Train | % Train | % | Train | %
a | Seq. | Corr. | Seq. | Corr. | Seq. | Corr. | Seq. | Corr.

[10%] [103] [10%] [103]
1 - 0 - 0 - 0 - 0
2 - 0 - 0 - 0 - 0
3 68 100 - 0 1170 30 - 0
4| 351 100 20 90 7450 30 - 0
5| 3562 | 100 45 90 1205 20 127 20
6 - 0 329 100 - 0 1506 20
7 - 0 3036 100 - 0 1366 10

Table 4 shows the influence of the parameter §, which is used to determine the
initial error covariance matrix in the Kalman filter. The rest of the parameters
are set as indicated before, except for the covariance matrix of artificial process
noise which is annealed from 0.005 to 10~® for the training set with n being
either 20 or 21.

We observe that learning speed and accuracy (percentage of correct solutions)
are considerably improved (compare Table 3). The number of training se-
quences is considerably smaller, and the percentage of successful solutions in
the case of (20,21) is far greater.

However, DEKF’s computational complexity per time step and weight is much
larger than that of gradient descent. To account for this we derived a relative
CPU time unit that corresponds to computation time for one epoch (i.e., 1000
sequence presentations) of LSTM training with gradient descent. This relative
CPU time is shown for DEKF in parentheses in Table 4 and can be compared
directly to number of training sequence values in Table 3.

A comparison of gradient descent and DEKF using this relative measure re-
veals that the additional complexity of LSTM with DEKF is largely compen-
sated for by the smaller number of training sequences needed for learning the
training set. Compare, for example, the (20,21) case: DEKF with 6 = 1072
achieves 90% correct solutions in 84 relative CPU units. This compares favor-
ably with gradient descent performance (see Table 3 for figures).

A lesser problem of DEKF is its occasional instability. Learning usually takes
place in the beginning of the training phase or never at all. All failures in
Table 4 are due to this.

19

Table 4

Results for CSL a™b"c" for training sets with n ranging from 1 to 10 and from
20 to 21, using DEKF-LSTM with different initial values for elements of the error
covariance matrix, § = 107, Showing (from left to right, for each set) the average
number of training sequences (CPU time in relative units given in parenthesis,
see text for details) and the percentage of correct solutions until training set was
learned.

{,.,10) (20, 21)
Train | % Train %
b Seq. | Corr. Seq. Corr.

[10%] [10°]

—3]2(46) [20 - 0

—2[2(46) [80 [4(84) | 90

—1[2(46) [100 | 4(84) | 70

0[2(46)] 60 [8(168) | 70

1[246) [100 [12(252) | 60

2[2(46) | 70 || 4(84) | 50

3[/2(46) | 80 [5(105) | 50
Saaaaaabbbbbbcccccc :input
a/rra/b%%a/b%%b bbbbccccccT :target
20 T i T i i i T i i i i T i i i SC1 .
yC1 <
0 _____ y02 +

Fig. 5. Test run with network solution for ab"c™ with n = 6, showing cell state s,
and cell output y,.

4.2.6 Analysis

In general, LSTM solves the a™b"c™ problem by using a combination of two
counters, instantiated separately in the two memory blocks. An example in
Figure 5 shows counter s., increasing when it encounters an a symbol and
then decreasing when it encounters a b symbol. A ¢ symbol causes the accom-
panying input gate s, to close and the accompanying forget gate y,, to reset
the cell state thus emptying the counter. Counter s, (in a different memory
block) does the same for b, ¢, and a, respectively. When counting up, the step
size is smaller due to the closed input gate, which is triggered by s. via the
peephole connection. This results in overshooting the initial value of s, which
in turn triggers the highly nonlinear opening of the output gate, leading to the
prediction of the sequence termination. In short, one memory block solves a"b"
while another solves b"c". All of this works in extremely precise and robust
fashion in both training algorithms.

20

5 Concluding remarks

LSTM combined with DEKF improves upon the original gradient descent
learning algorithm making LSTM achieve even faster convergence and much
better performance.

In the case of symbolic online learning the DEKF-based approach reduces
significantly the number of training steps necessary for error-free prediction.
However, it forgets more easily.

LSTM is the first RNN to generalize well on nonregular language benchmarks.
But by combining LSTM and DEKF we obtain a system that needs orders of
magnitude fewer training sequences and generalizes even better than the stan-
dard LSTM algorithm. The hybrid requires only training exemplars shorter
than a''b''c!! to extract the general rule of the context sensitive language
a™"c® and to generalize correctly for all sequences up to a'%9pt900¢1900 and
beyond, in a very stable and robust manner.

The combination DEKF-LSTM represents a general advance. The update
complexity per training example, however, is worse than gradient descent.
But the method is still local in time.

21

References

Bakker, B., 2001. Reinforcement learning with Long Short-Term Memory. In:
Dietterich, T. G., Becker, S., Ghahramani, Z. (Eds.), Advances in neural
information processing systems, 14. MIT Press, Cambridge, MA, to appear.

Boden, M., Wiles, J., 2000. Context-free and context-sensitive dynamics in
recurrent neural networks. Connection Science 12 (3).

Chalup, S., Blair, A., 1999. Hill climbing in recurrent neural networks for
learning the a"b"c" language. In: Proceedings of the 6th Conference on
Neural Information Processing. pp. 508-513.

Elman, J. L., 1990. Finding structure in time. Cognitive Science 14, 179-211.

Feldkamp, L. A., Puskorius, G. V., 1994. Training controllers for robustness:
multi-stream DEKF. In: IEEE International Conference on Neural Net-
works. pp. 2377-2382.

Gers, F. A., Schmidhuber, J., 2001. LSTM recurrent networks learn simple
context free and context sensitive languages. IEEE Transactions on Neural
Networks Accepted.

Gers, F. A., Schmidhuber, J., Cummins, F., 1999. Learning to forget: continual
prediction with LSTM. In: Proc. Int. Conf. on Artificial Neural Networks.
pp- 850-855.

Gers, F. A., Schmidhuber, J., Cummins, F., 2000. Learning to forget: continual
prediction with LSTM. Neural Computation 12 (10), 2451-2471.

Haykin, S., 1999. Neural networks: a comprehensive foundation, 2nd Edition.
Prentice-Hall, New Jersey.

Haykin, S. (Ed.), 2001. Kalman filtering and neural networks. Wiley.

Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J., 2001a. Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies. In:
Kremer, S. C., Kolen, J. F. (Eds.), A field guide to dynamical recurrent
neural networks. IEEE Press.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Com-
putation 9 (8), 1735-1780.

Hochreiter, S., Younger, A. S., Conwell, P. R., 2001b. Learning to learn using
gradient descent. In: Lecture Notes on Comp. Sci. 2130, Proc. Intl. Conf.
on Artificial Neural Networks. Springer, Berlin, Heidelberg, pp. 87-94.

Pearlmutter, B. A., 1995. Gradient calculations for dynamic recurrent neural
networks: a survey. IEEE Transactions on Neural Networks 6 (5), 1212
1228.

Plaut, D. C., Nowlan, S. J., Hinton, G. E., 1986. Experiments on learning
back propagation. Tech. Rep. CMU-CS-86-126, Carnegie—Mellon Univer-
sity, Pittsburgh, PA.

Puskorius, G. V., Feldkamp, L. A., 1994. Neurocontrol of nonlinear dynamical
systems with Kalman filter trained recurrent networks. IEEE Transactions
on Neural Networks 5 (2), 279-297.

Robinson, A. J., Fallside, F., 1991. A recurrent error propagation speech recog-
nition system. Computer Speech and Language 5, 259-274.

22

Rodriguez, P., Wiles, J., 1998. Recurrent neural networks can learn to imple-
ment symbol-sensitive counting. In: Advances in Neural Information Pro-
cessing Systems, 10. The MIT Press, pp. 87-93.

Rodriguez, P., Wiles, J., Elman, J., 1999. A recurrent neural network that
learns to count. Connection Science 11 (1), 5-40.

Schmidhuber, J., 1989. A local learning algorithm for dynamic feedforward
and recurrent networks. Connection Science 1 (4), 403-412.

Schmidhuber, J., 1992. A fixed size storage O(n?) time complexity learning
algorithm for fully recurrent continually running networks. Neural Compu-
tation 4 (2), 243-248.

Smith, A. W., Zipser, D., 1989. Learning sequential structures with the real-
time recurrent learning algorithm. International Journal of Neural Systems
1(2), 125-131.

Sun, G. Z., Giles, C. L., Chen, H. H., Lee, Y. C., 1993. The neural network
pushdown automaton: model, stack and learning simulations. Tech. Rep.
CS-TR-3118, University of Maryland, College Park.

Wiles, J., Elman, J., 1995. Learning to count without a counter: a case study of
dynamics and activation landscapes in recurrent networks. In: Proceedings
of the Seventeenth Annual Conference of the Cognitive Science Society. MIT
Press, Cambridge, MA, pp. 482-487.

Williams, R. J., Peng, J., 1990. An efficient gradient-based algorithm for on-
line training of recurrent network trajectories. Neural Computation 2 (4),
490-501.

Williams, R. J., Zipser, D., 1989. A learning algorithm for continually training
recurrent neural networks. Neural Computation 1, 270-280.

Williams, R. J., Zipser, D., 1992. Gradient-based learning algorithms for recur-
rent networks and their computational complexity. In: Chauvin, Y., Rumel-
hart, D. E. (Eds.), Back-propagation: theory, architectures and applications.
Hillsdale, NJ, Erlbaum.

23

