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Abstract

Givenis a problemsequenceanda probability distribution (thebias) on
programscomputing solutioncandidates. We presentan optimally fast
way of incrementallysolvingeachtaskin thesequence. Bias shiftsare
computedby programprefixes thatmodify thedistribution on their suf-
fixesby reusingsuccessfulcodefor previoustasks(storedin non-modifi-
ablememory). No testedprogramgetsmoreruntimethanits probability
timesthetotal searchtime. In illustrativeexperiments,oursbecomesthe
first general systemto learn a universalsolver for arbitrary � disk Tow-
ers of Hanoi tasks(minimal solutionsize

�������
). It demonstratesthe

advantagesof incrementallearning by profiting from previously solved,
simplertasksinvolving samplesof asimplecontext freelanguage.

1 Brief Intr oduction to Optimal UniversalSearch

Consideranasymptotically optimalmethod for taskswith quickly verifiablesolutions:

Method 1.1(LSEARCH) View the � -thbinarystring �
	�� � ��	
	���	 � � � 	�� ��� ��	
	�	�������� � asapo-
tential programfor a universal Turing machine. Givensomeproblem,for all � do: every���

stepson average execute(if possible)oneinstructionof the � -th program candidate,
until oneof theprogramshascomputeda solution.

Givensomeproblemclass,if someunknownoptimalprogram� requires ������� stepstosolve
aprobleminstanceof size � , and� happensto bethe � -th programin thealphabeticallist,
thenLSEARCH (for Levin Search) [6] will needat most ��� � � �������!�#"$�������
����� steps—
theconstantfactor

� �
maybehugebut doesnotdependon � . Compare[11, 7, 3].

RecentlyHutter developeda morecomplex asymptoticallyoptimal searchalgorithmfor
all well-definedproblems[3]. HSEARCH (for Hutter Search) cleverly allocatespart of
the total searchtime for searchingthe spaceof proofs to find provably correct candidate
programswith provableupperruntime bounds, andat any given time focusesresources
on thoseprogramswith thecurrently bestproventime bounds. Unexpectedly, HSEARCH
managesto reduce theconstant slowdown factorto avalueof

��%'&
, where

&
is anarbitrary

positiveconstant.Unfortunately, however, thesearchin proof spaceintroducesanunknown
additiveproblem class-specificconstantslowdown, whichagainmaybehuge.



In therealworld, constantsdo matter. In this paperwe will usebasicconceptsof optimal
searchto construct an optimal incremental problemsolver that at any given time may
exploit experiencecollectedin previoussearchesfor solutionsto earliertasks,to minimize
theconstantsignoredby nonincremental HSEARCH andLSEARCH.

2 Optimal Ordered ProblemSolver (OOPS)

Notation. Unlessstatedotherwiseor obvious, to simplify notation, throughout thepaper
newly introducedvariablesareassumedto be integer-valuedandto cover the rangeclear
from thecontext. Givensomefinite or infinite countable alphabet()")*+(',-�.(0/��������21 , let
(43 denotethesetof finite sequencesor stringsover ( , where 5 is theemptystring. We
usethe alphabet name’s lower casevariant to introduce (possiblyvariable) stringssuch
as 67��6 , ��6 / �������98�( 3 ; :��;6�� denotesthe number of symbolsin string 6 , where :��
5<�=">	 ;
6 � is the � -th symbolof 6 ; 6 �@? � "A5 if �CB � and 6 � 6 �ED ,�������6 � otherwise(where
6GF�HI"J6GF ? FKHI"$5 ). 6 , 6 / is theconcatenationof 6 , and 6 / (e.g.,if 6 , "JL�MON and 6 / "QPRL7N
then 6 , 6 / "SL�MONGPRLRN ).
Considercountable alphabets T and ( . Strings U
��U , ��U / �������V8WTX3 represent possiblein-
ternal statesof a computer; strings 67��6 , ��6 / �������Y8Z(Y3 representcodeor programsfor
manipulating states. We focus on T beingthe setof integersand ([HI"A* � � � �������O� �]\ 1
representing a setof ��\ instructionsof someprogramming language(that is, substrings
within statesmayalsoencodeprograms).^

is a setof currently unsolvedtasks.Let thevariable U
�;_��`8aT03 denote thecurrent state
of task _b8 ^

, with c -th component URd��e_�� on a computation tape _ (think of a separate
tapefor eachtask). For conveniencewe combine current state UR�e_�� andcurrentcode 6 in
a singleaddressspace, introducingnegativeandpositiveaddressesrangingfrom

� :!�
UR�;_f���
to :��;6�� %g�

, definingthecontent of addressc as h<�eci�G�;_��EHI"S6 d if 	�jkcXlm:!�
6�� and h<�eci���e_��9HI"
U�n<d��e_�� if

� :��
UR�e_��!��l)c�lo	 . All dynamic task-specificdatawill be representedat non-
positiveaddresses.In particular, thecurrent instructionpointer ip(r) Hp"qh<�;LXdIr��e_����G�e_�� of task
_ canbefoundat (possiblyvariable) addressL dIr �e_��Elm	 . Furthermore,U
�;_�� alsoencodesa
modifiable probability distribution �s�;_��@"$*�� , �e_��O�
� / �e_��O���������
� ��t �e_��.14�vu d �wd��e_��@" � � on
( . Thisvariable distributionwill beusedto selectanew instructionin casecx�y�e_�� pointsto
thecurrent topmost addressright aftertheendof thecurrentcode6 .
L�z-{�|�}O~ ��� 	 is a variable addressthat cannotdecrease. Oncechosen,the codebias
6GF ? ���!�v�v�i�
� will remainunchangeableforever — it is a (possiblyempty)sequence of pro-
grams6 , 6 / ����� , someof themprewiredby theuser, othersfrozenafterprevioussuccessful
searchesfor solutions to previoustasks.Given

^
, thegoalis to solveall tasks_=8 ^

, by a
programthatappropriatelyusesor extends thecurrentcode 6 F ? � �i���v�i�
� .

Wewill dothis in abias-optimal fashion,thatis, nosolutioncandidatewill getmuchmore
searchtime thanit deserves,givensomeinitial probabilistic biasonprogramspace(�3 :
Definition 2.1(BIAS-OPTIMAL SEARCHERS) Givenis aproblemclass� , asearchspace�

of solutioncandidates(where anyproblem _�8a� shouldhavea solutionin
�

), a task-
dependentbiasin form of conditional probability distributions ���;6��
_�� on thecandidates
6�8 �

, anda predefinedprocedure that createsandtestsanygiven 6 on any _�8�� within
time �G�;67��_�� (typically unknownin advance). A searcher is � -bias-optimal ( � � �

) if for
anymaximaltotal search time � �]�O� BW	 it is guaranteedto solveanyproblem_�8�� if it
hasa solution��8 � satisfying�G�p����_��El����2���+_��s� �]�O�R� � .

Unlike reinforcementlearners[4] andheuristicssuchasGeneticProgramming [2], OOPS
(section2.2) will be � -bias-optimal, where� is asmallandacceptable number, suchas8.



2.1 OOPSPrerequisites:Multitasking & Prefix Tracking Thr oughMethod “T ry”

TheTuringmachine-basedsetupsfor HSEARCH andLSEARCH assumepotentially infinite
storage.Hencethey maylargely ignore questionsof storagemanagement.In any practical
system,however, we have to efficiently reuselimited storage.This, andmultitasking, is
what the presentsubsectionis about. The recursive methodTry below allocatestime to
programprefixes,eachbeingtestedon multiple taskssimultaneously, suchthatthesumof
theruntimesof any givenprefix, testedon all tasks,doesnot exceedthetotal searchtime
multiplied by theprefix probability (theproduct of the tape-dependent probabilities of its
previously selectedcomponentsin ( ). Try trackseffects of testedprogramprefixes,such
asstoragemodifications (including probability changes)andpartially solved tasksets,to
resetconditionsfor subsequenttestsof alternative prefix continuationsin anoptimally ef-
ficient fashion(at mostasexpensive astheprefix teststhemselves).Optimalbacktracking
requiresthat any prolongationof someprefix by sometoken getsimmediately executed.
To allow for efficientundoingof statechanges,weuseglobal Booleanvariables��LR_���d.�;_f�
(initially FALSE) for all possiblestatecomponentsU�d��e_�� . We initialize time �iF4Hp"�	�� prob-
ability ��Hp" �

; q-pointer 6.��HI"�Lwz-{.|!}O~ � andstate U
�;_�� (including c��y�e_�� and �y�e_�� ) with
task-specificinformationfor all tasknames_ in a ring

^ F of tasks. Herethe expression
“ring” indicatesthat the tasksareordered in cyclic fashion; � ^ � denotesthenumber of
tasksin ring

^
. Givena global searchtime limit � , we Try to solve all tasksin

^ F , by
usingexistingcodein 6`"S6
, ? � r and/ or by discovering anappropriateprolongation of 6 :
Method 2.1(BOOLEAN Try ( 6.����_fF�� ^ F
�!��F
��� )) (returnsTRUE or FALSE; _fF48 ^ F ).
1. Makeanemptystack   ; setlocal variables_=HI"W_
F�� ^ Hp" ^ F����VHp"W��F�� DoneHI" FALSE.

WHILE � ^ �2B>	 and �¡lZ�`� and instructionpointer valid (
� :!�
UR�;_f����locx�s�;_f��l�6.� )

and instructionvalid (
� l¢hw�;cx�s�e_����G�e_��Kl � \ ) andno halt condition (e.g., error such as

divisionby0) encountered(evaluateconditionsin thisorderuntil first satisfied,if any) DO:

If possible, interpret / executetoken h<�ecx�s�;_��!�G�;_�� according to the rules of the givenpro-
gramminglanguage (this maymodify UR�e_�� including instructionpointer c��y�e_�� anddistri-
bution �y�e_�� , but not 6 ), continually increasing� by theconsumedtime. Whenever theexe-
cutionchangessomestatecomponent U7d��e_�� whose�£LR_f�Rd��;_��¤" FALSE, set �£LR_��
d��e_��0Hp"
TRUE andsavethepreviousvalue ¥URd!�e_�� by pushing thetriple �;c.�!_f��¥U�d��e_��!� onto   . Remove
_ from

^
if solved.IF � ^ �2B¦	 , set _ equal to thenext taskin ring

^
. ELSE setDone Hp"

TRUE; L z-{�|�}O~ � HI"W6.� (all taskssolved;new codefrozen,if any).

2. Use   to efficientlyresetonly themodified �£LR_f�<d������ to FALSE (but donotpop   yet).

3. IF cx�s�;_f�K"§6.� %J�
(this meansan online requestfor prolongation of the curr ent

prefix thr ough a new token): WHILE Done " FALSE and there is someyet untested
token ¨�8$( (untried since ��F as value for 6 � r D , ), set 6 � r D , HI"A¨ and Done HI" Try
( 6.� %W� ��_f� ^ �!�O����©s�s�;_��G��¨¤� ), where �s�;_f����¨¤� is ¨ ’sprobability according to current �y�e_�� .
4. Use   to efficiently restore only those U
d������ changed since ��F , thusalso restoringin-
structionpointer cx�s�;_ F � andoriginal search distribution �s�;_ F � . Returnthevalueof Done.

It is important thatinstructionswhoseruntimesarenotknown in advancecanbeinterrupted
by Try at any time. Essentially, Try conductsa depth-first searchin programspace,where
thebranchesof thesearchtreeareprogramprefixes,andbacktrackingis triggeredonce the
sumof theruntimesof thecurrent prefixonall currenttasksexceedstheprefixprobability
multipliedby thetotal time limit. A successfulTry will solveall tasks,possiblyincreasing
L�z-{�|�}O~ � . In any caseTry will completelyrestoreall statesof all tasks.Tracking / undoing
effectsof prefixesessentiallydoesnotcostmorethantheirexecution. Sothe � in Def. 2.1
of � -bias-optimality is not greatlyaffectedby backtracking: ignoring hardware-specific
overhead,we loseat mosta factor2. An efficient iterative (non-recursive) versionof Try



for abroadvarietyof initial programming languageswasimplementedin C.

2.2 OOPSFor Finding UniversalSolvers

Now suppose thereis an ordered sequenceof tasks _ , ��_ / ������� . Task _�ª may or may not
depend on solutionsfor _RdV�;c��v«�" � � � �������O��«�B¦ci�G� For instance,task _�ª maybeto find a
fasterwaythrough amazethantheonefound during thesearchfor asolutionto task _ ªGn , .
Wearesearchingfor asingleprogramsolvingall tasksencounteredsofar (see[9] for vari-
antsof this setup).Inductively supposewe have solvedthefirst � tasksthrough programs
storedbelow addressL z-{.|!}O~ � , andthatthemostrecently found programstartingataddress
LR¬ �G­v® lbL�z-{.|!}O~ � actuallysolvesall of them,possiblyusinginformationconveyed by earlier
programs. To find a program solving the first � %¯�

tasks,OOPS invokesTry asfollows
(usingsetnotationfor ring

^
):

Method 2.2(OOPS (n+1)) Initialize ��Hp" � �-6.��Hp"SL z-{.|!}O~ � .

1. Set̂ "�*-_ ��D ,+1 and cx�s�;_ ��D ,��9Hp"WLR¬ �G­�® . IF Try ( 6.�s�!_ ��D ,f� ^ ��	���	�� ° ) thenexit.

2. IF
� %�� Bb� goto 3. Set̂ "¯*�_R,f�!_-/����������!_ ��D ,+1 ; setlocal variable LKHp"qLwz�{.|�}.~ � %��

;
for all _Y8 ^

set cx�s�e_��9Hp"WL . IF Try ( 6.����_ ��D , � ^ ��	���	�� ° ) set L ¬ ��­v® Hp"qL andexit.

3. Set�¦Hp" � � , andgo to 1.

That is, we spendroughly equaltime on two simultaneoussearches.Thesecond(step2)
considers all tasksandall prefixes. Thefirst (step1), however, focusesonly on task � %W�
andthemostrecent prefix andits possiblecontinuations. In particular, startaddressL ¬ �G­v®
doesnot increaseaslong asnew taskscanbesolvedby prolonging 6 �G±I²!³
´v? ���!���v�i�;� . Why is
this justified?A bit of thought shows thatit is impossiblefor themostrecentcodestarting
at LR¬ �G­v® to requestany additional tokensthatcouldharmits performanceonprevioustasks.
We alreadyinductively know thatall of its prolongationswill solveall tasksup to � .

Therefore, given tasks _ , ��_ / �������G� we first initialize L ¬ �G­�® ; then for c�Hp" � � � ������� invoke
OOPS �eci� to find programsstartingat (possiblyincreasing) addressLs¬ ��­v® , eachsolvingall
taskssofar, possiblyeventually discoveringauniversalsolverfor all tasksin thesequence.
As addressL ¬ �G­�® increasesfor the � -th time, 6 � is definedastheprogramstartingat L ¬ �G­v® ’s
old valueandending right before its new value.Clearly, 6 � ( �§B � ) mayexploit 6 � .

Optimality . OOPS notonly is asymptotically optimal in Levin’ssense[6] (seeMethod 1.1),
but alsonearbias-optimal (Def. 2.1). To seethis, considera program � solvingproblem
_Oª within � steps,given current codebias 6
F ? ���i���v�i�
� and L ¬ �G­v® . Denote� ’s probability by
���p� � . A bias-optimal solverwouldsolve _�ª within at most � � ���p� � steps.We observethat
OOPS will solve _Gª within atmost

�
µ � � ���p�<� steps,ignoring overhead: a factor2 might get
lost for allocatinghalf the searchtime to prolongations of the mostrecent code, another
factor2 for theincrementaldoubling of � (necessarybecausewe do not know in advance
thebestvalueof � ), andanotherfactor2 for Try ’s resetsof statesandtasks.Sothemethod
is 8-bias-optimal(ignoring hardware-specificoverhead) with respectto thecurrenttask.

Our only biasshiftsaredueto freezingprogramsoncethey have solveda problem. That
is, unlike thelearningrate-basedbiasshiftsof ADAPTIVE LSEARCH [10], thoseof OOPS
do not reduce probabilitiesof programsthat weremeaningful andexecutablebefore the
additionof any new 6 d . Only formerly meaningless,interruptedprogramstrying to access
codefor earliersolutions whenthereweren’t any suddenly maybecomeprolongable and
successful,oncesomesolutionsto earliertaskshavebeenstored.

Hopefully we have ���2�<�`B0B����p��¶x� , where� ¶ is among themostprobablefastsolvers of
_Oª that do not usepreviously foundcode. For instance,� may be rathershortandlikely
becauseit usesinformation conveyed by earlier found programsstoredbelow L z-{�|�}O~ � .



E.g., � may call an earlier stored 6 d as a subprogram. Or maybe � is a short and fast
programthatcopies6 d into stateUR�e_Gª-� , thenmodifiesthecopy just a little bit to obtain ·6 d ,
thensuccessfullyapplies ·6 d to _Gª . If � ¶ is not many timesfasterthan � , thenOOPS will
in general suffer from a muchsmallerconstant slowdown factorthanLSEARCH, reflecting
theextentto whichsolutions to successive tasksdoshareusefulmutual information.

Unlike nonincremental LSEARCH andHSEARCH, which do not requireonline-generated
programsfor their aymptotic optimality properties,OOPS doesdependon suchprograms:
Thecurrently testedprefix maytemporarily rewrite thesearchprocedureby invoking pre-
viously frozencodethatredefinestheprobability distribution on its suffixes,basedon ex-
perienceignoredby LSEARCH & HSEARCH (metasearching & metalearning!).

As we aresolvingmore andmoretasks,thuscollectingandfreezingmoreandmore 6 d , it
will generally become harder andharderto identify andaddressandcopy-edit particular
usefulcodesegments within theearliersolutions.As a consequencewe expect thatmuch
of theknowledgeembodiedby certain6 ª actuallywill beabout how to accessandeditand
useprograms 6 d ( c¸j�« ) previously storedbelow 6 ª .

3 A Particular Initial Programming Language

Theefficient searchandbacktracking mechanismdescribed in section2.1 is not awareof
thenatureof theparticular programming languagegivenby ( , thesetof initial instructions
for modifying states.Thelanguagecouldbelist-orientedsuchasLISP, or basedonmatrix
operationsfor neural network-likeparallel architectures,etc.For theexperimentswewrote
aninterpreterfor anexemplary, stack-based,universalprogramminglanguageinspiredby
FORTH [8], whosedisciplespraiseits beautyandthecompactnessof its programs.

Eachtask’s tapeholds its state:various stack-likedatastructuresrepresented assequences
of integers, including a datastackds (with stackpointerdp) for function arguments,an
auxiliarydatastackDs, a function stackfnsof entriesdescribing (possiblyrecursive) func-
tionsdefinedby thesystemitself, acallstackcs(with stackpointercpandtopentry N�UR¹ Ni��º )
for calling functions,wherelocal variable N�UR¹ N���ºv� c�� is thecurrent instructionpointer, and
basepointer N�UR¹ N���ºv� P�� pointsinto dsbelow thevalues consideredasargumentsof themost
recentfunction call: Any instructionof theform inst ( » , ���������!» � ) expectsits � arguments
ontopof ds, andreplacesthemby its returnvalues. Illegaluseof any instructionwill cause
thecurrently testedprogramprefix to halt. In particular, it is illegal to setvariables(such
asstackpointers or instructionpointers) to valuesoutsidetheir prewired ranges,or to pop
emptystacks,or to divide by 0, or to call nonexistentfunctions,or to changeprobabilities
of nonexistenttokens,etc.Try (Section2.1) will interruptprefixesassoonastheir �9Bk�¤� .

Instructions. We defined68 instructions, suchasoldq(n) for calling the � -th previously
found program 6 � , or getq(n) for making a copy of 6 � on stackds (e.g., to edit it with
additional instructions). Lack of spaceprohibits to explain all instructions(see[9]) — we
have to limit ourselvesto the few appearing in solutionsfound in theexperiments,using
readable namesinsteadof their numbers: Instruction c1() returnsconstant1. Similarly
for c2(), ..., c5(). dec(x)returns » �¯�

; by2(x) returns
� » ; grt(x,y) returns 1 if »¼B§½ ,

otherwise0; delD() decrementsstackpointer Dp of Ds; fromD() returns the top of Ds;
toD() pushesthe top entryof P7U ontoDs; cpn(n)copiesthen topmost dsentriesonto the
top of ds, increasingdp by � ; cpnb(n) copies � dsentriesabove the N�U
¹ N���º�� P�� -th dsentry
onto the top of ds; exec(n)interprets � as the number of an instructionandexecutes it;
bsf(n)considers theentrieson stackdsabove its N�U
¹ N���º�� P�� % � -th entryascodeanduses
callstackcstocall thiscode(codeis executedbystep1of Try (Section2.1), oneinstruction
at a time; the instructionret() causesa returnto the addressof the next instruction right
after the calling instruction). Given � input argumentson ds, instruction defnp()pushes
onto ds the begin of a definition of a procedure with � inputs; this procedurereturnsif



its topmostinput is 0, otherwise decrements it. callp() pushesontods codefor a call of
the mostrecentlydefined function / procedure. Both defnpandcallp alsopushcodefor
makinga freshcopy of the inputs of the mostrecentlydefinedcode,expectedon top of
ds. endnp() pushescodefor returning from thecurrent call, thencalls thecodegenerated
so far on stackds above the � inputs, applying the codeto a copy of the inputs on top
of P7U . boostq(i) sequentially goesthrough all tokens of the c -th self-discoveredfrozen
program,boostingeachtoken’sprobability by adding� \ to its enumeratorandalsoto the
denominatorsharedby all instructionprobabilities— denominatorandall numeratorsare
storedontape,definingdistribution �s�;_�� .
Initialization. Givenany task,weaddtask-specificinstructions. Westartwith amaximum
entropy distribution on the B�¾
¿À( d (all numeratorssetto 1), theninsertsubstantialprior
biasby assigningthe lowest(easilycomputable)instruction numbersto the task-specific
instructions, and by boosting (seeabove) the initial probabilities of appropriate “small
number pushers” (suchasc1, c2, c3) that pushonto ds the numbersof the task-specific
instructions, suchthat they becomeexecutable aspart of codeon ds. We alsoboost the
probabilities of the simplearithmeticinstructions by2 anddec, suchthat the systemcan
easilycreateotherintegers from theprobable ones(e.g.,codesequence (c3 by2by2dec)
will returninteger11). Finally we alsoboostboostq.

4 Experiments: Towersof Hanoi and Context-FreeSymmetry

Givenare � disksof � differentsizes,stackedin decreasingsizeon thefirst of threepegs.
Moving somepeg’s topdisk to thetopof another (possiblyempty) peg, onediskat a time,
but never a largerdisk ontoa smaller, transferall disksto the third peg. Remarkably, the
fastestwayof solvingthis famous problemrequires

�Á�4���
moves � � � 	R� .

Untrained humans find it hardto solve instances� BQ¾ . Anderson[1] appliedtraditional
reinforcementlearningmethods andwas able to solve instancesup to � "ÃÂ , solvable
within atmost7moves.Langley [5] usedlearningproductionsystemsandwasabletosolve
Hanoi instancesup to � "¼° , solvablewithin at most31 moves. Traditional nonlearning
planning proceduressystematicallyexploreall possiblemovecombinations.They alsofail
to solve Hanoi problem instanceswith � B � ° , dueto the exploding searchspace(Jana
Koehler, IBM Research,personal communication,2002). OOPS, however, is searchingin
programspaceinsteadof raw solutionspace.Therefore,in principle it shouldbeableto
solve arbitrary instancesby discoveringtheproblem’s elegantrecursive solution: given �
andthreepegs T���ÄÀ��Å (source peg, auxiliarypeg, destinationpeg), defineprocedure

Method 4.1(HANOI(S,A,D,n)) IF
� "Z	 exit. Call HANOI(S,D, A, n-1); move top disk

fromSto D; call HANOI(A, S,D, n-1).

The � -th taskis to solve all Hanoi instancesup to instance� . We representthedynamic
environment for task� onthe � -th tasktape,allocating� %�� addressesfor eachpeg, tostore
its current disk positions anda pointerto its top disk (0 if thereisn’t any). We represent
pegs T���ÄÀ��Å by numbers1, 2, 3, respectively. Thatis, given aninstanceof size � , wepush
ontods thevalues

� � � ��Â�� � . By doingsoweinsertsubstantial,nontrivial prior knowledge
about problem sizeandthefactthatit is usefulto represent eachpeg by a symbol.

Weaddthreeinstructionsto the68instructionsof ourFORTH-likeprogramming language:
mvdsk()assumesthat T���ÄÀ��Å arerepresentedby thefirst threeelements on ds above the
current basepointer N�UR¹ N���º�� P�� , andmovesa disk from peg T to peg Å . Instruction xSA()
exchangestherepresentationsof T and Ä , xAD() thoseof Ä and Å (combinationsmaycre-
atearbitrarypeg patterns). Illegal movescausethecurrent programprefix to halt. Overall
successis easilyverifiable sinceourobjectiveis achieved oncethefirst two pegsareempty.

Within reasonable time (a week)on anoff-the-shelfpersonalcomputer (1.5GHz) thesys-



temwasnot ableto solve instancesinvolving morethan3 disks.This givesusa welcome
opportunity to demonstrateits incremental learningabilities: we first trainedit on anad-
ditional, easiertask,to teachit something about recursion,hopingthat this would helpto
solve theHanoiproblem aswell. For this purposewe useda seemingly unrelatedsymme-
try problem basedon thecontext freelanguage * ������� 1 : giveninput � on thedatastack
ds, thegoalis to placesymbolsontheauxiliarystackDssuchthatthe

� � topmostelements
are � 1’s followedby � 2’s. We addtwo moreinstructions to theinitial programminglan-
guage: instruction1toD() pushes1 ontoDs, instruction 2toD() pushes2. Now we have a
totalof fivetask-specificinstructions(including thosefor Hanoi),with instructionnumbers
1, 2, 3, 4, 5, for 1toD, 2toD, mvdsk, xSA, xAD, respectively.

Sowe first boost (Section3) instructionsc1, c2 for thefirst trainingphasewherethe � -th
task � � " � �������G��Â�	R� is to solve all symmetryproblem instancesup to � . Thenwe undo
the symmetry-specificboostsof c1, c2 andboost insteadthe Hanoi-specific“instruction
number pushers” NGÂ���NOÆ���N�° for the subsequent training phasewherethe � -th task (again� " � �������G��Â
	 ) is to solveall Hanoiinstancesup to � .

Results.Within roughly 0.3days,OOPS foundandfrozecodesolvingthesymmetryprob-
lem. Within 2 more daysit alsofound a universalHanoisolver, exploiting thebenefitsof
incremental learningignoredby nonincrementalHSEARCH andLSEARCH. It is instructive
to studythe sequence of intermediatesolutions. In what follows we will transform inte-
gersequencesdiscoveredby OOPS backinto readable programs(to fully understandthem,
however, oneneedsto know all sideeffects,andwhich instructionhasgotwhichnumber).

For thesymmetryproblem, within lessthana second,OOPS found silly but working code
for � " �

. Within lessthan1 hour it hadsolved the 2nd, 3rd, 4th, and5th instances,
alwayssimply prolonging thepreviouscodewithout changing thestartaddressL ¬ �G­v® . The
codefoundsofar wasunelegant: (defnp2toD grt c2 c2 endnpboostqdelD delD bsf2toD
fromD delD delD delD fromD bsf by2bsf by2 fromD delD delD fromD cpnbbsf). But it
doessolveall of thefirst 5 instances.Finally, after0.3days,OOPS hadcreatedandtesteda
new, elegant, recursiveprogram(noprolongation of thepreviousone)with anew increased
startaddress L ¬ �G­v® , solvingall instancesup to 6: (defnp c1calltp c2 endnp). Thatis, it was
cheaper to solve all instancesup to 6 by discoveringandapplying this new programto all
instancessofar, thanjustprolongingold codeoninstance6 only. In fact,theprogramturns
out to be a universal symmetryproblem solver. On the stack,it constructs a 1-argument
procedure that returnsnothing if its input argumentis 0, otherwisecalls the instruction
1toDwhosecodeis 1, thencallsitself with a decrementedinput argument,thencalls2toD
whosecodeis 2, thenreturns. Using this program,within anadditional 20 milliseconds,
OOPS hadalsosolvedtheremaining 24symmetry tasksup to � "WÂ
	 .
ThenOOPS switchedto theHanoiproblem. 1 mslater it hadfound trivial codefor � " �

:
(mvdsk).After a dayor soit hadfound freshyet bizarre code(new startaddressLV¬ ��­v® ) for� " � � � : (c4c3cpnc4by2c3by2exec). Finally, after3 daysit hadfound freshcode(new
L ¬ �G­v® ) for � " � � � ��Â : (c3decboostqdefnpc4calltp c3c5calltp endnp). Thisalreadyis an
optimaluniversalHanoisolver. Therefore,within 1 additional dayOOPS wasableto solve
the remaining 27 tasksfor � up to 30, reusingthe sameprogram 6 �G±I²�³;´�? ���!�v�v�i�
� againand
again. Recallthattheoptimal solutionfor � "¦Â�	 takes B � 	<Ç mvdskoperations,andthat
for eachmvdskseveral otherinstructionsneedto beexecutedaswell!

Thefinal Hanoisolutionprofits from theearlierrecursive solutionto thesymmetry prob-
lem. How? Theprefix (c3 decboostq)(probability 0.003) temporarily rewritesthesearch
procedure(this illustratesthe benefitsof metasearching!) by exploiting previous code:
Instruction c3 pushes 3; decdecrements this; boostqtakestheresult2 asanargumentand
thusbooststheprobabilitiesof all componentsof the2ndfrozenprogram,which happens
to be the previously found universalsymmetry solver. This leadsto an online biasshift
thatgreatly increasestheprobability thatdefnp, calltp, endnp, will appearin thesuffix of



the online-generated program. Theseinstructions in turn arehelpful for building (on the
datastackds) thedouble-recursiveproceduregeneratedby thesuffix (defnpc4calltp c3c5
calltp endnp), which essentiallyconstructsa 4-argumentprocedurethatreturns nothing if
its input argumentis 0, otherwisedecrements thetop input argument,calls the instruction
xAD whosecodeis 4, thencalls itself, thencalls mvdskwhosecodeis 5, thencalls xSA
whosecodeis 3, thencallsitself again,thenreturns(comparethestandardHanoisolution).

Thetotalprobability of thefinal solution, giventhepreviouscodes,is 	�� Â � °w© � 	 n , F . Onthe
otherhand, theprobability of theessentialHanoicode(defnpc4calltp c3c5calltp endnp),
givennothing, is only Æ¤© � 	 n ,iÈ , whichexplainswhy it wasnotquickly found without the
helpof aneasiertask.Soin thisparticular setuptheincrementaltrainingdueto thesimple
recursion for thesymmetry problem indeedprovidedusefultrainingfor themore complex
Hanoirecursion,speedingup thesearchby a factorof roughly 1000.

Theentire4 daysearchtested93,994,568,009 prefixes correspondingto 345,450,362,522
instructions costing678,634,413,962 time steps(someinstructionscostmorethan1 step,
in particular, thosemaking copiesof stringswith length B �

, or thoseincreasing theprob-
abilities of more thanoneinstruction). Search time of an optimal solver is a natural
measure of initial bias. Clearly, mosttestedprefixesareshort — they eitherhalt or get
interruptedsoon.Still, someprogramsdo run for a long time; the longestmeasured run-
time exceeded 30 billion steps.The stacks  of recursive invocationsof Try for storage
management(Section2.1)collectively neverheldmorethan20,000elementsthough.

Different initial biaswill yield differentresults.E.g., we couldsetto zerotheinitial prob-
abilities of mostof the73 initial instructions (mostareunnecessaryfor our two problem
classes),andthensolve all

�KÉ Â�	 tasksmorequickly (at theexpenseof obtaining a non-
universal initial programminglanguage). Thepoint of this experimentalsection,however,
is not to find themostreasonable initial biasfor particular problems,but to illustratethe
general functionality of the first generalnear-bias-optimalincremental learner. In ongo-
ing researchwe areequipping OOPS with neural network primitives andareapplying it to
robotics. SinceOOPS will scaleto largerproblemsin essentiallyunbeatablefashion,the
hardwarespeed-up factorof

� 	 Ç expectedfor thenext 30yearsappears promising.
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