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ABSTRACT

The traditional theory of Kolmogorov complexity and algorithmic probability focuses
on monotone Turing machines with one-way write-only output tape. This naturally
leads to the universal enumerable Solomonoff-Levin measure. Here we introduce more
general, nonenumerable but cumulatively enumerable measures (CEMs) derived from
Turing machines with lexicographically nondecreasing output and random input, and
even more general approximable measures and distributions computable in the limit. We
obtain a natural hierarchy of generalizations of algorithmic probability and Kolmogorov
complexity, suggesting that the “true” information content of some (possibly infinite)
bitstring z is the size of the shortest nonhalting program that converges to  and nothing
but z on a Turing machine that can edit its previous outputs. Among other things we
show that there are objects computable in the limit yet more random than Chaitin’s
“number of wisdom” Omega, that any approximable measure of z is small for any x
lacking a short description, that there is no universal approximable distribution, that
there is a universal CEM, and that any nonenumerable CEM of z is small for any =
lacking a short enumerating program. We briefly mention consequences for universes
sampled from such priors.

Keywords: computability in the limit, generalized algorithmic probability, generalized
Kolmogorov complexity hierarchy, halting probability Omega, cumulatively enumerable
measures, computable universes.

1. Introduction and Outline

We extend the theory of algorithmic probability [40, 25, 13, 31, 41, 45, 28, 29, 16,
14, 17, 37, 1, 30, 39, 9, 42, 24, 23] by studying nonenumerable priors computable in
the limit [19, 33, 15]. This leads to a hierarchy of generalizations of the concepts of
universal prior and Kolmogorov complexity. For instance, many objects with high
traditional Kolmogorov complexity have low generalized Kolmogorov complexity;
many objects with low traditional algorithmic probability have high generalized
algorithmic probability.
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To set the stage for our main results, Section 2 (Preliminaries) introduces uni-
versal Turing Machines (TMs) more general than those considered in previous re-
lated work: unlike traditional TMs, General TMs or GTMs may edit their previous
outputs (compare Burgin’s inductive TMs [6]), and Enumerable Output Machines
(EOMs) may do this provided the output does not decrease lexicographically. In the
spirit of computability in the limit [19, 33, 15] we will define: a formally describable
bitstring = has a finite, never halting GTM program that computes z such that
each output bit is revised at most finitely many times; that is, each finite prefix of
x eventually stabilizes (Defs. 2.1-2.5); describable functions can be implemented by
such programs (Def. 2.10); weakly decidable problems have solutions computable
by never halting programs whose output is wrong for at most finitely many steps
(Def. 2.11). This constructive notion of formal describability is less restrictive than
the traditional notion of computability [43], mainly because we do not insist on the
existence of a halting program that computes an upper bound of the convergence
time of the n-th bit of z. Formal describability thus pushes constructivism [5, 2]
to the extreme, barely avoiding the nonconstructivism embodied by even less re-
strictive concepts of describability — compare A%-describability [34]. Theorem 2.1
will generalize the weakly decidable halting problem by demonstrating that it is
not weakly decidable whether a finite string is a description of a describable object
(there is a related insight for analytic TMs with real-valued inputs by Hotz, Vierke
and Schieffer [21]).

Outline of main results. Section 3 generalizes the traditional concept of
Kolmogorov complexity or algorithmic information [25, 40, 13] of finite z (the length
of the shortest halting program computing x) to the case of objects describable by
nonhalting programs on EOMs and GTMs (Defs. 3.2-3.3). It is shown that the
generalization for EOMs is describable, but the one for GTMs is not (Theorem 3.1).
Certain objects are much more compactly encodable on EOMs than on traditional
monotone TMs, and Theorem 3.3 shows that there are also objects with short
GTM descriptions yet incompressible on EOMs and therefore “more random” than
Chaitin’s €2 [14, 10, 39, 9, 42], the halting probability of a TM with random input,
which is incompressible only on monotone TMs. This leads to a natural TM type-
specific Kolmogorov complexity hierarchy expressed by Inequality (12).

Section 4 introduces the nondescribable convergence probability of a GTM (Def.
4.14) as well as very general formally describable (semi)measures that are com-
putable in the limit. Unfortunately, Theorem 4.2 (proof by M. Hutter) shows that
there is no universal describable measure that dominates all others, in the sense
that it assigns higher probability to any bitstring x, save for a constant factor inde-
pendent of z. In our search for universal measures we introduce cumulatively enu-
merable measures (CEMs, Def. 4.5), where the cumulative probability of all strings
lexicographically greater than a given string y is EOM-computable or computably
enumerable (c.e.). In general the CEMs are not c.e., but they are computable in
the limit, and they dominate the traditional c.e. priors studied in classic work
by Solomonoff, Levin and others [40, 45, 29, 16, 17, 37, 41, 14, 30]. Theorem 4.1
shows that there is indeed a universal nonenumerable CEM. It is also shown that



this CEM assigns to x the probability that a universal EOM whose input bits are
chosen randomly produces an output starting with x (Corollary 4.3 and Lemma
4.2).

Section 5 establishes relationships between generalized Kolmogorov complexity
and generalized algorithmic probability, extending previous work on c.e. semimea-
sures by Levin, Gacs, and others [45, 29, 16, 14, 17, 30]. For instance, Theorem 5.3
shows that the universal CEM assigns a probability to each c.e. object proportional
to % raised to the power of the length of its minimal EOM-based description, times
a small corrective factor. For GTMs there is no analogue statement, but at least
we can show that objects with approximable probabilities yet without very short
descriptions on GTMs are necessarily very unlikely a priori (Theorems 5.4 and 5.5).
Additional suspected elegant links between generalized Kolmogorov complexity and
probability are expressed in form of Conjectures 5.1-5.3.

2. Preliminaries

2.1. Notation

Much but not all of the notation used here is similar or identical to the one used
in the standard textbook on Kolmogorov complexity by Li and Vitdnyi [30].

Since sentences over any finite alphabet are encodable as bitstrings, without
loss of generality we focus on the binary alphabet B = {0,1}. A denotes the empty
string, B* the set of finite sequences over B, B the set of infinite sequences over
B, B! = B*UB®X®. z,y,2,2',2% stand for strings in Bf. If x € B* then zy is the
concatenation of z and y (e.g., if z = 10000 and y = 1111 then zy = 100001111).
Let us order B* lexicographically: if z precedes y alphabetically (like in the example
above) then we write z < y or y = z; if x may also equal y then we write x < yory >
z (e.g., A <001 < 010 < 1 < 1111...). The context will make clear where we also
identify x € B* with a unique nonnegative integer 1z (e.g., string 0100 is represented
by integer 10100 in the dyadic system or 20 = 1%2*+0%23+1%224+0%21+0%20 in the
decimal system). Indices i, j, m, mo, m1, n,no,t, to range over the positive integers,
constants ¢, cg,c; over the positive reals, f,g denote functions mapping integers
to integers, log the logarithm with basis 2, lg(r) = mazi{integer k : 2%¥ < r}
for real r > 0. For z € B*\{A}, 0.z stands for the real number with dyadic
expansion z (note that 0.20111.... = 0.1 = 0.210 = 0.2100... for € B*, although
z0111.... # 21 # 210 # 2100...). For z € B*, I(z) denotes the number of bits in z,
where [(z) = oo for x € B*®; [(A) = 0. z, is the prefix of = consisting of the first n
bits, if I(z) > n, and x otherwise (xg := A). For those x € B* that contain at least
one 0-bit, ' denotes the lexicographically smallest y > x satisfying I(y) < I(z) (z'
is undefined for z of the form 111...1). We write f(n) = O(g(n)) if there exists
¢,ng such that f(n) < cg(n) for all n > nyg.

For notational simplicity we will use the > sign also to indicate summation over
uncountably many strings in B, rather than using traditional measure notation and
J signs. The reader should not feel uncomfortable with this notational liberty —



density-like nonzero sums over uncountably many bitstrings, each with individual
measure zero, will not play any critical role in the proofs.

2.2. Turing Machines: Monotone TMs (MTMs), General TMs (GTMs), Enumer-
able Output Machines (EOMs)

The standard model of theoretical computer science is the Turing Machine (TM)
[43]. It allows for emulating any known computer. Most TMs considered in previous
work are monotone, that is, once they print out a bit they cannot revise it later.
We will point out that such TMs are in a certain sense less expressive than other
TMs that may edit their previous outputs — certain objects without any short
nonhalting programs on traditional TMs have very short programs on other TMs.
To deal with the differences between monotone computability, enumerability, and
computability in the limit, we consider three types of TMs.

Monotone TMs (MTMs). Most current theory of description size and induc-
tive inference is based on MTMs (compare [30, p. 276 ff]) with several tapes, each
tape being a finite chain of adjacent squares with a scanning head initially point-
ing to the leftmost square. There is one output tape and at least two work tapes
(sufficient to efficiently compute everything traditionally regarded as computable).
The MTM has a finite number of internal states, one of them being the initial state.
MTM behavior is specified by a lookup table mapping current state and contents
of the squares above work tape scanning heads to a new state and an instruction
to be executed next. There are instructions for shifting work tape scanning heads
one square left or right (appending new squares when necessary), and for writing 0
or 1 on squares above work tape scanning heads. The only input-related instruc-
tion requests an input bit determined by an external process and copies it onto the
square above the first work tape scanning head (no extra input tape). There may
or may not be a halt instruction to terminate a computation. MTMs are called
monotone because they have a one-way write-only output tape — they cannot edit
their previous output, because the only ouput instructions are: append new square
at the right end of the output tape and fill it with 0/1.

General TMs (GTMs). GTMs embody the concept of computability in the
limit. They are like MTMs but have additional output instructions to edit their
previous output. Our motivation for introducing GTMSs is that certain bitstrings
are very compactly describable on nonhalting GTMs but not on MTMs, as will be
seen later. This has consequences for definitions of individual describability and
probability distributions on describable things. The additional instructions are: (a)
shift output scanning head right/left (but not out of bounds); (b) delete square at
the right end of the output tape (if it is not the initial square or above the scanning
head); (c) write 1 or 0 on square above output scanning head. Compare Burgin’s
inductive TMs and super-recursive algorithms [6, 8].

Example 2.1 (Pseudorandom universe based on halting problem) Why

consider GTMs at all? Because in a certain sense they represent the non-plus-ultra
of constructive computability. For instance, consider a programmer of virtual reali-
ties. Which are his fundamental limits; which universes could he possibly generate?



He could write a finite program that computes a never-ending sequence z of finite
bitstrings x',z2%, ... representing the history of some discrete universe, where z*
represents the state at discrete time step k, and z! the “Big Bang” [35]. “Noise”
will have to be simulated by invoking a finite pseudorandom generator subroutine
PRG. Suppose its n-th output bit PRG(n) is 1 if the n-th program of a list of all
possible programs halts, and 0 otherwise. There is no halting algorithm computing
PRG(n) for all n, otherwise the halting problem would be solvable, which it is not
[43]. Hence in general there is no computer that outputs z and only x without ever
editing some previously computed history. That is, if we want to study the set of
all programmable universes [36] then we should not limit ourselves to MTMs but
consider GTMs as well.

Note, however, that the output of a GTM might not stabilize in the sense that
certain output bits might flip from 0 to 1 and back forever.

Enumerable Output Machines (EOMs). EOMs embody the important
concept of computable enumerability. Like GTMs, EOMs can edit their previous
output, but not such that it decreases lexicographically. The expressive power of
EOMs lies in between those of MTMs and GTMs, with interesting universality prop-
erties whose analogues do not hold for GTMs. EOMs are like MTMs, except that
the only permitted output instruction sequences are: (a) shift output tape scanning
head left /right unless this leads out of bounds; (b) replace bitstring starting above
the output scanning head by the string to the right of the scanning head of the
second work tape, readjusting output tape size accordingly, but only if this lexico-
graphically increases the contents of the output tape. The necessary test can be
hardwired into the finite TM transition table. A significant fraction of this paper
concerns EOMs with randomly chosen input bits.

Self-Delimiting Programs. Sequences of input bits requested by halting TMs

are traditionally called self-delimiting programs because they convey all information
about their own length [29, 16, 14]. Here we will use this term also for complete
finite input sequences requested by nonhalting MTMs, EOMs, and GTMs. Consider
three possible cases: (1) the input sequence is a halting self-delimiting program
(traditional case), (2) the TM at some point ceases requesting new input bits but
does not halt — then we have a nonhalting self-delimiting program, which may
produce either finite or infinite output, (3) the TM never ceases requesting new
input bits, which suggests the notion of infinite programs. In any case no program
can be prefix of another one.
Example 2.2 (Illustration of TM Hierarchy) There are short self-delimiting
MTM programs for the infinite dyadic expansion of 7, but not for 2, the halting
probability of an MTM whose input bits are obtained by tossing an unbiased coin
whenever it requests a new bit [14, 10, 39, 9, 42]. On the other hand, there are
short self-delimiting EOM programs for 2, but not for certain bitstrings that have
short self-delimiting GTM programs, to be exhibited by Theorem 3.3.



2.8. Infinite Computations, Convergence, Formal Describability

Most traditional computability theory focuses on properties of halting programs.
Given an MTM or EOM or GTM T with halt instruction and p,z € B*, we write

T(p) == (1)

for “p computes x on T and halts”. Much of this paper, however, deals with
programs that never halt, and with TMs that do not need halt instructions.

Definition 2.1 (Convergence) Let p € B* denote the input string or program
read by TM T. Let Ty(p) denote T’s finite output string after t instructions. We
say that p and p’s output stabilize and converge towards x € B* iff for each n
satisfying 0 < n < l(z) there exists a postive integer t, such that for all t > t,:
Ti(p)n = z,, and [(Ty(p)) < (). Then we write

T(p) ~ . (2)

Although each beginning or prefix of  eventually becomes stable during the possibly
infinite computation, there need not be a halting program that computes an upper
bound of stabilization time, given any p and prefix size. Compare the concept of
computability in the limit [19, 33, 15] and [20, 32].

Definition 2.2 (TM-Specific Individual Describability) Given a TM T, an
x € B is T-describable or T-computable iff there is a finite p € B* such that
T(p) ~ .

According to this definition, objects with infinite shortest descriptions on T are
not T-describable, reflecting the fact that we will never ever be able to produce a
complete T-based description of such an object.

Definition 2.3 (Universal TMs) Let C denote a set of TMs. C has a universal
element if there is a TM U € C such that for each T € C there exists a constant
string pr € B* (the compiler) such that for all possible programs p, if T(p) ~ =
then UC (prp) ~ x.

Definition 2.4 (M, E, G) Let M denote the set of MTMs, E denote the set of
EOMs, G denote the set of GTMs.

M, E, G all have universal elements, according to the fundamental compiler theorem
(for instance, a fixed compiler can translate arbitrary LISP programs into equivalent
FORTRAN programs).

Definition 2.5 (Individual Describability) Let C denote o set of TMs with
universal element UY. Some x € B! is C-describable or C-computable if it is
U -describable. E-describable strings are called computably enumerable (c.e.). G-
describable strings are called formally describable or simply describable.
Definition 2.6 (Always converging TMs) TM T always converges if for all of
its possible programs p € B¥ there is an x € B* such that T(p) ~ z.

For example, MTMs and EOMs converge always. GTMs do not.



Definition 2.7 (Approximability) Let 0.z denote a real number, x € B*\{\}.
0.z is approximable by TM T if there is a p € B* such that for each real € > 0 there
exists a ty such that

| 0.z —0.T;(p) |[< €

for all times t > tg. 0.z is approximable if there is at least one GTM T as above.
Lemma 2.1 If 0.z is approximable, then x is describable, and vice versa.

Henceforth we will exchangeably use the expressions approzimable, describable,
computable in the limit.

2.4. Formally Describable Functions

Much of the traditional theory of computable functions focuses on halting pro-
grams that map subsets of B* to subsets of B*. The output of a program that
does not halt is usually regarded as undefined, which is occasionally expressed by
notation such as T'(p) = oo. In this paper, however, we will not lump together
all the possible outputs of nonhalting programs onto a single symbol “undefined.”
Instead we will consider mappings from subsets of B* to subsets of B¥, sometimes
from B! to B!.

Definition 2.8 (Encoding B*) Encode x € B* as a self-delimiting input p(x) for
an appropriate TM, using

l(p(x)) = l(x) + 2log I(x) + O(1) (3)

bits as follows: write I(x) in binary notation, insert a “0” after every “0” and a
“17 after every “1,” append “01” to indicate the end of the description of the size
of the following string, then append x.

For instance, = 01101 gets encoded as p(z) = 1100110101101.

Definition 2.9 (Recursive Functions) A function h : D; C B* - D, C B*
is recursive if there is a TM T using the encoding 2.8 such that for oll x € D; :
T(p(x)) = h(z).

Definition 2.10 (Describable Functions) Let T denote a TM using the encod-
ing of Def. 2.8. A function h : D; C B* — Dy C B* is T-describable if for all
x € Dy : T(p(x)) ~ h(z). Let C denote a set of TMs using encoding 2.8, with
universal element UC. h is C-describable or C-computable if it is U¢-computable.
If the T' above is universal among the GTMs with such input encoding (see Def.
2.8) then h is describable.

Compare functions in the arithmetic hierarchy [34] and the concept of A% describ-
ability, e.g., [30, p. 46-47].

2.5. Weak Decidability and Convergence Problem

Traditionally, decidability of some problem class implies there is a halting algo-
rithm that prints out the answer, given a problem from the class. We now relax
the notion of decidability by allowing for infinite computations on EOMs or GTMs
whose answers converge after finite yet possibly unpredictable time. Essentially, an



answer needs to be correct for almost all the time, and may be incorrect for at most
finitely many initial time steps (compare the concept of computability in the limit
[20, 19, 33, 15] and super-recursive algorithms [6, 8]).

Definition 2.11 (Weak decidability) Consider a characteristic function h : Dy C
B* — B: h(z) = 1 if © satisfies a certain property, and h(x) = 0 otherwise. The
problem of deciding whether or not some © € Dy satisfies that property is weakly
decidable if h(x) is describable (compare Def. 2.10).

Example 2.3 Is a given string p € B* a halting program for a given MTM? The
problem is not decidable in the traditional sense (no halting algorithm solves the
general halting problem [43]), but weakly decidable and even E-decidable, by a
trivial algorithm: print “0” on first output square; simulate the MTM on work
tapes and apply it to p, once it halts after having read no more than /(p) bits print
“1” on first output square.

Example 2.4 It is weakly decidable whether a finite bitstring p is a program for
a given TM. Algorithm: print “0”; feed p bitwise into the internally simulated TM
whenever it requests a new input bit; once the TM has requested [(p) bits, print
“17; if it requests an additional bit, print “0”. After finite time the output will
stabilize forever.

Example 2.5 It is weakly decidable whether number theory is consistent (contrast
this with Godel’s famous negative result [18]).

Theorem 2.1 (Convergence Problem) Given a GTM, it is not weakly decid-
able whether a finite bitstring is a converging program, or whether some of the
output bits will fluctuate forever.

Proof. (Based on the standard diagonalization trick [11, 18, 43]; compare a
related result for analytic TMs [12, 21]). Let us write T'(x) | if there is a € B* such
that T'(z) ~ z. Let us write T'(z) § if T’s output fluctuates forever in response to
z (e.g., by flipping from 1 to zero and back forever). Let Ay, Aa, ... be an effective
enumeration of all GTMs. Uniquely encode all pairs of finite strings (z,y) in B* x B*
as finite strings code(z,y) € B*. Suppose there were a GTM U such that (*): for all
x,y € B* : U(code(z,y)) ~ 1if Az(y) |, and U(code(x,y)) ~ 0 otherwise. Then
one could construct a GTM T with T'(z) ~» 1 if U(code(z, z)) ~» 0, and T(z) J oth-
erwise. Let y be the index of T' = A, then A,(y) | if U(code(y,y)) ~ 0, otherwise
Ay(y) 3. By (*), however, U(code(y,y)) ~ 1if Ay(y) |, and U(code(y,y)) ~ 0 if
Ay(y) 3. Contradiction. O

3. Complexity of Constructive Descriptions

The remaining sections of this paper contain its main contributions, embedded
in the context of earlier work.

Traditionally, the Kolmogorov complexity [25, 40, 13] or algorithmic complexity
or algorithmic information of x € B* is the length of the shortest halting program
computing z:

Definition 3.1 (Kolmogorov Complexity K) Fiz a universal MTM or EOM



or GTM U with halt instruction, and define

K(z) = min{l(p) : U(p) = z}. (4)

We will now extend this in novel ways to nonhalting EOMs and GTMs.

3.1. Generalized Kolmogorov Complezity for EOMs and GTMs

Definition 3.2 (Generalized K1) Given any TM T, define
Ki(z) = min{l(p) : T(p) ~ 2}

Compare Schnorr’s less general “process complexity” for MTMs [37, 44].
Proposition 3.1 (K™, K¥ K% based on Invariance Theorem) Consider Def.
2.4. Let C denote a set of TMs with universal TM U€ (T € C). We drop the index
T, writing

KC(z) = Kyc(z) < Kr(z) + O(1).

This is justified by an appropriate Invariance Theorem [25, 40, 13]: there is a
positive constant ¢ such that Kyc(x) < Kr(x) + ¢ for all z, since the size of the
compiler that translates arbitrary programs for T into equivalent programs for U¢
does not depend on .

Definition 3.3 (Kmy, Km™, Km¥ Km®) Given TM T and x € B*, define

Kme(z) = min{l(p) : T(p) ~ ay,y € B*}. (5)

Consider Def. 2.4. If C denotes a set of TMs with universal TM U, then define
KEm®(z) = Kmye(z).

KmC is a generalization of Schnorr’s [37] and Levin’s [28] complexity measure Km™
for MTMs.

Describability of K (z) and K (x). K(z) is not computable by a halting pro-
gram [25, 40, 13], but obviously G-computable or describable; the z with 0.z = ﬁ

is even c.e. Even K¥(z) is describable for finite z, using the following algorithm:

Run all EOM programs in “dovetail style” such that the n-th step of the
i-th program is executed in the n + i-th phase (i = 1,2,...); whenever a
program outputs z, place it (or its prefix read so far) in a tentative list
L of z-computing programs or program prefixes; whenever an element
of L produces output = z, delete it from L; whenever an element of
L requests an additional input bit, update L accordingly. After every
change of L replace the current estimate of K¥(x) by the length of the
shortest element of L. This estimate will eventually stabilize forever.

Theorem 3.1 K%(x) is not describable.



Proof. Identify finite bitstrings with the integers they represent. If K% (x)
were describable then also

h(z) = maz, {K%(y) : 1 <y < g(2)}, (6)
where g is any fixed recursive function, and also

f(@) = miny{y : K (y) = h(z)}. (7)

Since the number of descriptions p with I(p) < n — O(1) cannot exceed 2"~ ()
but the number of strings x with [(x) = n equals 2", most 2 cannot be compressed
by more than O(1) bits; that is, K%(z) > log x — O(1) for most z. From (7) we
therefore obtain K (f(x)) > log g(x) — O(1) for large enough =, because f(z) picks
out one of the incompressible y < g(z). However, obviously we also would have
K% (f(z)) <l(z) + 2log I(x) + O(1), using the encoding of Def. 2.8. Contradiction
for quickly growing g with low complexity, such as g(z) = 22". O

3.2. Expressiveness of EOMs and GTMs

Since GTMs may occasionally rewrite parts of their output, they are computa-
tionally more expressive than MTMs in the sense that they permit much more com-
pact descriptions of certain objects — compare also [7]. For instance, K (z)— K% ()
is unbounded, as will be shown next. This will later have consequences for predic-
tions, given certain observations.

Theorem 3.2 K(z) — K%(z) is unbounded.
Proof. Define

W(z) = mazy{K(y) : 1<y < g(a)}; f'(z) =miny{y: K(y) =h'()}, (8)

where g is recursive. Then K%(f'(z)) = O(i(z) + K(g)) (where K(g) is the size
of the minimal halting description of function g), but K(f'(z)) > log g(z) — O(1)
for sufficiently large x — compare the proof of Theorem 3.1. Therefore K (f'(x)) —
KC(f'(x)) > O(log g(x)) for infinitely many = and quickly growing g with low
complexity. O

3.2.1. EOMs dominate MTMs

Similarly, some x are compactly describable on EOMs but not on MTMs. To
see this, consider Chaitin’s €2, the halting probability of an MTM whose input bits
are obtained by tossing an unbiased coin whenever it requests a new bit [14].
is c.e. (dovetail over all programs p and sum up the contributions 274?) of the
halting p), but there is no recursive upper bound on the number of instructions
required to compute (2, given n. This implies K(Q,) = n + O(1) [14] and also
KM(Q,) =n+ O(1). It is easy to see, however, that on nonhalting EOMs there
are much more compact descriptions:

KP(Q) < O(K(n)) < O(log n); (9)

10



that is, there is no upper bound of

KM(Qn) _KE(Qn) (10)

3.2.2. GTMs dominate EOMs — novel objects less regular than 2

We will now show that there are describable strings that are constructively com-
putable in the limit and have a short GTM description yet are “even more random”
than Chaitin’s Omegas, in the sense that even on EOMs they do not have any
compact descriptions — contrast this with Kurtz’s and Kucera’s nonconstructive
randomness in the arithmetic hierarchy [27, 26].

Theorem 3.3 For all n there are z € B* with
KP(z)>n—0(1), yet K%z) < O(log n).

That is, K¥(z) — K%(2) is unbounded.
Proof. For z € B*\{\} and universal EOM T define

Ez)= > 27 (11)

yEB:0.y>0.z p:T(p)~y

The reader should not worry about the sum over uncountably many objects, because
the dyadic expansion of Z(z) is EOM-computable or c.e. The algorithm works as
follows:

Algorithm A: Initialize the real-valued variable V' by 0, run all possible
programs of EOM T dovetail style such that the n-th step of the i-th
program is executed in the n + i-th phase; whenever the output of a
program prefix ¢ starts with some y satisfying 0.y > 0.z for the first
time, set V := V + 2749); henceforth ignore continuations of q.

V approximates Z(z) from below in c.e. fashion — infinite p are not worrisome
as T must only read a finite prefix of p to observe 0.y > 0.z if the latter holds
indeed. We will now show that knowledge of Z(x),,, the first n bits of Z(z), allows
for constructing a bitstring z with K¥(z) > n — O(1) when z has low complexity.

Suppose we know Z(x),. Once algorithm A above yields V > Z(x),, we know
that no programs p with /(p) < n will contribute any more to V. Choose the shortest
z satisfying 0.z = (0.Ymin — 0.2)/2, where ypn is the lexicographically smallest y
previously computed by algorithm A such that 0.y > 0.z. Then 2z cannot be among
the strings T-describable with fewer than n bits. Using the Invariance Theorem
(compare Proposition 3.1) we obtain KZ(z) >n — O(1).

While prefixes of () are greatly compressible on EOMs, z is not. On the other
hand, z is compactly G-describable: K%(2) < K(x) + K(n) + O(1). For instance,
choosing a low-complexity z, we have K% (2) < O(K(n)) < O(log n). O

The above construction shows that the novel objects are “just as computable in
the limit” as €2, despite being more random. An interesting topic of future research
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may be to identify the most random describable object, if there is one, which we
doubt.

The discussion above also reveals a natural complexity hierarchy. Ignoring ad-
ditive constants, we have

KC(z) < KP(z) < KM(z), (12)

where for each “<” relation above there are x which allow for replacing “<” by
((<.”

3.8. Which is the “True” Information Content of x?

Traditionally, the algorithmic information conveyed by z is identified with K (z),
the size of the shortest halting program of z. This makes a lot of sense, because
we often want to limit ourselves to programs that at some point allow us to be sure
that their output is complete. In the light of the results above, however, one might
argue that the “true” information content of x is actually embodied by the smaller
K%(z), the size of the smallest nonhalting GTM program for z. K%(z) is not
computable in the limit (Theorem 3.1), while K () is. K¥ is between K and K¢
in a certain sense — it is “closer” to K¢ than K while being “just as computable
in the limit” as K.

3.4. Relation to Conditional Complexity

For x € B*, the nonapproximable K% (z) can also be rewritten as K%(z) =
K(z | ) (Peter Géacs, personal communication, 2001). What about the approx-
imable and thus more accessible K¥(z)? It may be of interest to identify and
examine the y in K¥(z) = K(z | y).

4. Measures and Probability Distributions

We will now show how the Kolmogorov complexity hierarchy introduced above
translates into an algorithmic prior hierarchy.
Suppose z represents the history of our universe up until now. What is its most
likely continuation y € B*? Bayes’ theorem yields
P(z | zy)P(zy) _ P(zy)

Play | z) = S oep Pz) ~ N(@) x P(zy) (13)

where P(2? | 2!) is the probability of 22, given knowledge of 2!, and

N(z)= ) P(az) (14)

zeB!

is a normalizing factor. The most likely continuation y is determined by P(zy), the
prior probability of zy. Now what are the formally describable ways of assigning
prior probabilities to computable universes? In what follows we will first consider
traditional describable semimeasures on B*, then nontraditional probability distri-
butions on B*.
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4.1. Dominant and Universal (Semi)Measures

Traditionally, the algorithmic probability of x € B* is defined as the probability
of producing z by a halting program for a universal TM whose input bits are
selected randomly. Since some of the possible input sequences cause nonhalting
computations, the individual probabilities do not add up to 1. This and related
issues inspired work on semimeasures [40, 45, 41, 17, 30] as opposed to classical
measures considered in traditional statistics.

The next three definitions concerning semimeasures on B* are almost but not
quite identical to those of discrete semimeasures [30, p. 245 ff] and continuous
semimeasures [30, p. 272 f] based on the work of Levin and Zvonkin [45].
Definition 4.1 (Semimeasures) A (binary) semimeasure p is o function B* —
[0,1] that satisfies:

pA) =1 w@) 2 0; p(z) = p(20) + p(zl) + [(z), (15)

where i is a function B* — [0,1] satisfying 0 < fi(z) < p(z).

A notational difference to the approach of Levin [45] (who writes p(z) < p(z0) +
w(x1)) is the explicit introduction of . Compare the introduction of an undefined
element u by Li and Vitanyi [30, p. 281]. Note that ) . i(x) < 1. Later we will
discuss the interesting case fi(x) = P(z), the a priori probability of z.

Definition 4.2 (Dominant Semimeasures) A semimeasure o dominates an-
other semimeasure  if there is a constant c, such that for all x € B*

Ho(@) > cu(a). (16)

Definition 4.3 (Universal Semimeasures) Let M be a set of semimeasures on
B*. A semimeasure pg € M is universal if it dominates all p € M.

In what follows, we will introduce novel, nonenumerable but describable semimea-
sures dominating the c.e. ones considered in previous work [45][30, p. 245 ff, p.272

ff].
4.2. A Novel Universal Cumulatively Enumerable Measure (CEM)

The traditional universal enumerable measure [40, 45, 29, 16, 17, 41, 14, 30]
studied in the theory of optimal inductive inference [40, 41, 24, 23] reflects properties
of a universal MTM with random input. In what follows we will simply replace the
MTM by a more expressive EOM and obtain a nonenumerable measure that (1)
dominates the traditional measure, (2) is “just as computable” in the limit as the
traditional one, (3) is universal in its class. It will turn out though that this approach
does not generalize to the case of GTMs. Some new definitions are in order.
Definition 4.4 (Cumulative measure Cp) For semimeasure u on B* define the
cumulative measure C:

Cuw) = Y ww+ Y A (17)

y=z: I(y)=I(z) y-z: 1(y)<i(z)

13



Note that we could replace “I(z)” by “l(z) + ¢” in the definition above. Recall that
z' denotes the smallest y = z with I(y) < I(z) (¢’ may be undefined). We have

w(z) = Cu(z) if v =11...1; else u(zx) = Cu(z) — Cu(z'). (18)

Definition 4.5 (CEMs) Semimeasure u is a CEM if Cu(z) is c.e. for allxz € B*.

Then p(z) is the difference of two finite c.e. values, according to (18).
Theorem 4.1 There is a universal CEM.

Proof. We first show that one can enumerate the CEMs, then construct a
universal CEM from the enumeration. Check out the differences to Levin’s proofs
that there is a universal discrete semimeasure and a universal c.e. semimeasure
[45, 28], and Li and Vitdnyi’s presentation of the latter [30, p. 273 fI], attributed
to J. Tyszkiewicz.

Without loss of generality, consider only EOMs without halt instruction and
with fixed input encoding of B* according to Def. 2.8. Such EOMs are c.e., and
correspond to an effective enumeration of all c.e. functions from B* to Bf. Let
EOM; denote the i-th EOM in the list, and let EOM;(x,n) denote its output after
n instructions when applied to € B*. The following procedure filters out those
EOM; that already represent CEMs, and transforms the others into representations
of CEMs, such that we obtain a way of generating all and only CEMs.

FOR all 7 DO in dovetail fashion:

START: let Vu;(x) and Vj;(x) and VCu;(z) denote variable
functions on B*. Set Vu;(A) := Vi (A) := VCOui(\) = 1,
and Vy;(z) := Vi (z) := VCui(z) := 0 for all other z € B*.
Define VCpu;(x') := 0 for undefined z'. Let z denote a string
variable.

FORn =1,2,...D0:

(1) Lexicographically order and rename all z with
I(z) <n:

sli= A<z =0=<23<... <21

= 11...1.
——

(2) FOR k =2"*! —1 down to 1 DO:
(2.1) Systematically search for the smallest
m > n such that z := EOM;(z*,m) # A
AND 0.z > VCOpu;(z*+l) if k < 27+ — 1; set
VCu;i(zk) :=0.2.
(3) For all z > X satisfying I(z) < n, set Vu;(z) :=
VCui(xz) — VCui(x'). For all z with I(z) < n, set
Vii(z) == Vpi(z) — Vpi(zl) — Vg (20). For all x
with I(z) = n, set Vi(z) := V().
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If EOM; indeed represents a CEM p; then each search process in (2.1) will ter-
minate, and the VCpu;(x) will enumerate the Cp;(z) from below, and the V u;(x)
and Vji;(z) will approximate the true p;(z) and fi;(z), respectively, not necessarily
from below though. Otherwise there will be a nonterminating search at some point,
leaving V u; from the previous loop as a trivial CEM. Hence we can enumerate all
CEMs, and only those. Now define (compare [28]):

po(z) = Zanﬂn(m)a fo(z) = Z anfin(z), where oy >0, Zan =1,
n>0 n>0 n

and a, is a c.e. constant, e.g., a, = # or o, = m (note a slight difference
to Levin’s approach which just requests ), «, < 1). Then uy dominates every pn,
by Def. 16, and is a semimeasure according to Def. 4.1: pg(A) = 1; po(z) > 0; and

po(2) = D an[un(20) + pn (1) + fin(2)] = po(20) + po(21) + fo(2).  (19)

Lo also is a CEM by Def. 4.5, because

Cuo(z) = Z Z anpn(y) + Z Z anfin(y) =

y=z: I(z)=l(y) n>0 y=z: I(z)>l(y) n>0
Z Qn Z pn(y) + Z Bn(y) | = Z anCin(z) (20)
n>0 yra: I(z)=I(y) y-a: 1(2)>U(y) n>0

is c.e., since ay, and Cup(x) are (dovetail over all n). That is, po(z) is approximable
as the difference of two c.e. finite values, according to Equation (18). O

4.8. Approzimable and Cumulatively Enumerable Distributions

To deal with infinite z, we will now extend the treatment of semimeasures on
B* to nontraditional probability distributions on B¥.

Definition 4.6 (Probabilities) A probability distribution P on x € B satisfies

P(z) >0 ZP(.’L‘) =1

Definition 4.7 (Semidistributions) A semidistribution P on z € B* satisfies

P(z) >0; Y P(z) <1
Definition 4.8 (Dominant Distributions) A distribution Py dominates another
distribution P if there is a constant cp > 0 such that for all x € B*:
P()(JI) > CPP(.'L'). (21)

Definition 4.9 (Universal Distributions) Let P be a set of probability distribu-
tions on x € B*. A distribution Py € P is universal if for all P € P: Py dominates
P.
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Unfortunately it turns out that the analogue of the universal CEM Theorem 4.1
for EOMs with random input does not hold for GTMs:

Theorem 4.2 There is no universal approximable semidistribution.

Proof. The following proof is due to M. Hutter (personal communications
by email following a discussion of approximable universes on 2 August 2000 in
Munich). It is an extension of a modified® proof [30, p. 249 ff] that there is no
universal recursive semimeasure.

Tt suffices to focus on z € B*. Identify strings with integers, and assume P(z) is
a universal approximable semidistribution. We construct an approximable semidis-
tribution @(x) that is not dominated by P(z), thus contradicting the assumption.
Let Py(x),Pi(z),... be a sequence of recursive functions converging to P(z). We
recursively define a sequence Qo(z),Q1(x), ... converging to Q(z). The basic idea
is: each contribution to @ is the sum of n consecutive P probabilities (n increasing).
Define Qq(z) := 0; I, := {y : n? <y < (n+1)?}. Let n be such that z € I,. Define
it (k') as the element with smallest P, (largest Q;—1) probability in this interval,
ie., ji* := minarg,.; Pi(z) (kf := maxarg,c; Q¢—1(x)). If n-P(k}) is less than
twice and n-P;(j7*) is more than half of Q:—1(k]"), set Q¢(x) = Q¢—1(z). Otherwise
set Q¢(z) = n-P(ji) for z = j* and Q¢(z) = 0 for = # ji*. Q(x) is obviously total
recursive and non-negative. Since 2n <|I,|, we have

Z Qi(z) < 2n-B(j;") = 2n- mln Pt Z Py(z

zel, z€l,

Summing over n we observe that if P; is a semidistribution, so is J¢. From some ¢
on, P;(x) changes by less than a factor of 2 since P;(x) converges to P(z)>0. Hence
Q¢(x) remains unchanged for t>t0 and converges to Q(z) := Quo(z) = Qy, (). But
QUR) = Qi (i) > n-Py(j) > in-P(j1), violating our universality assumption
P(z) > c-Q(2). o
Definition 4.10 (Cumulatively Enumerable Distributions — CEDs) A dis-
tribution P on B* is a CED if CP(x) is c.e. for all x € B*, where

CP(r):= Y P() (22)

yEBlyrz

4.4. TM-Induced Distributions and Convergence Probability

Suppose TM T’s input bits are obtained by tossing an unbiased coin whenever a
new one is requested. Levin’s universal discrete enumerable semimeasure [28, 14, 16]
or semidistribution m is limited to B* and halting programs:

%As pointed out by M. Hutter (14 Nov. 2000, personal communication) and even earlier by
A. Fujiwara (1998, according to P. M. B. Vitdnyi, personal communication, 21 Nov. 2000), the
proof on the bottom of p. 249 of [30] should be modified. For instance, the sum could be taken
over z;—1 < = < z;. The sequence of inequalities E i <n<ui P(z) > z; P(x;) is then satisfiable

by a suitable z; sequence, since lim 1nfxﬁoo{zP(z)} = 0. The basic idea of the proof is correct,
though, and quite useful.
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Definition 4.11 (m)
m@) = Y 27, (23)
pT(p)=z
Note that ) m(z) < 1if T universal. We will now generalize this in obvious but
nontraditional ways to B* and nonhalting programs for MTMs, EOMs, and GTMs.
Definition 4.12 (Pr, KPr) Suppose T’s input bits are obtained by tossing an un-
biased coin whenever a new one is requested.

Pr(z)= > 27", KPp(z)=—lgPr(z) for Pr(z) >0, (24)
p:T(p)~z

where x,p € B

Program Continua. According to Def. 4.12, most infinite x have zero probability,
but not those with finite programs, such as the dyadic expansion of 0.5v/2. However,
a nonvanishing part of the entire unit of probability mass is contributed by continua
of mostly incompressible strings, such as those with cumulative probability 249
computed by the following class of uncountably many infinite programs with a
common finite prefix q: “repeat forever: read and print next input bit.” The
corresponding traditional measure-oriented notation for

Z 9—l(az) — 9—l(a)

z:T(qz)~z

would be
0.g+2~ 49
/ dz = 2719,
0

-q
For notational simplicity, however, we will continue using the ) sign to indicate
summation over uncountable objects, rather than using a measure-oriented notation
for probability densities. The reader should not worry about this — the theorems
in the remainder of the paper will focus on those z € B* with P(z) > 0; density-like
nonzero sums over uncountably many bitstrings, each with individual measure zero,
will not play any critical role in the proofs.

Definition 4.13 (Universal TM-Induced Distributions P“; KPC) If C de-
notes a set of TMs with universal element U, then we write

PC(z) = Pyc(z); KPC(z):= —lg P°(z) for P°(z) > 0. (25)

We have PY(z) > 0 for Do C B! the subset of C-describable z € Bf. The
attribute universal is justified, because of the dominance Pr(z) = O(P%(z)), due
to the Invariance Theorem (compare Proposition 3.1).

Since all programs of EOMs and MTMs converge, P and PM are proper prob-
ability distributions on B*. For instance, Y. PP(z) = 1. P%, however, is just a
semidistribution. To obtain a proper probability distribution PNy, one might think
of normalizing by the convergence probability Y:
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Definition 4.14 (Convergence Probability) Given GTM T, define
_ Yrppa 2

PNT(x) TT )

where

= Y 2,

p:3z:T(p)~z

YT not describable. Uniquely encode each TM T as a finite bitstring, and identify
M, E,G with the corresponding sets of bitstrings. While the function fM : M —
Bf : f(T) = QY is ce., the function f¢ : G — B* : f(T) = YT is not even
describable, essentially due to Theorem 2.1.

Even PP(z) and PM(z) are generally not describable for z € B¥, in the sense
that there is no GTM T that takes as an input a finite description (or program) of
any M-describable or E-describable z € B* and converges towards PM (z) or PP (z).
This is because in general it is not even weakly decidable (Def. 2.11) whether two
programs compute the same output. If we know that one of the program outputs is
finite, however, then the conditions of weak decidability are fulfilled. Hence certain
TM-induced distributions on B* are describable, as will be seen next.

Definition 4.15 (TM-Induced Cumulative Distributions) IfC denotes a set
of TMs with universal element UC | then we write (compare Def. 4.10):

CPC(z) = CPyc(z). (26)

Lemma 4.1 For z € B*, CPZ(z) is c.e.

Proof. The following algorithm computes CP¥(z) (compare proof of Theorem
3.3):

Initialize the real-valued variable V by 0, run all possible programs of
EOM T dovetail style; whenever the output of a program prefix ¢ starts
with some y > « for the first time, set V := V 42744); henceforth ignore
continuations of q.

In this way V enumerates C P (z). Infinite p are not problematic as only a finite
prefix of p must be read to establish y > x if the latter indeed holds. O
Similarly, facts of the form y > = € B* can be discovered after finite time.
Corollary 4.1 For x € B*, PP(x) is approzimable or describable as the difference
of two c.e. values:
PE@) = 3" PE(y) - 37 PE(y), (27)
yre yrz

Now we will make the connection to the previous subsection on semimeasures on
B*.

18



4.5. Universal TM-Induced Measures

Definition 4.16 (P-Induced Measure pP) Given a distribution P on B*, de-
fine a measure uP on B* as follows:

uP(z) = Z P(zz). (28)

z€B#
Note that uP(z) = P(z) (compare Def. 4.1):
uP(A) =1; pP(z) = P(z) + pP(20) + pP(z1). (29)
For those z € B* without 0-bit we have uP(x) = CP(xz), for the others
uP(z) = CP(z) — CP(z"). (30)

Definition 4.17 (TM-Induced Semimeasures ur, u™, u?, u%) Given some TM
T, for x € B* define ur(x) = uPr(z). Again we deviate a bit from Levin’s B*-
oriented path [45] (survey: [30, p. 245 ff, p. 272 ff]) and extend pr to x € B>,
where we define pr(x) = pr(x) = Pr(z). If C denotes a set of TMs with universal
element UC, then we write

pC (@) = pye (z); Kpc(z) = —lg u(x) for p°(z) > 0. (31)

We observe that u© is universal among all T-induced semimeasures, T € C. Note
that

uC () = pC (20)+uC (1) + PC(z) for x € B*; u(z) = P%(z) for x € B>. (32)

It will be obvious from the context when we deal with the restriction of u© to B*.

Corollary 4.2 For z € B*, u?(z) is a CEM and approzimable as the difference of
two c.e. values: p¥(z) = CPE(z) for x without any 0-bit, otherwise

pE(z) = CPP(x) — CPE(a"). (33)

4.6. Universal CEM vs EOM with Random Input

Corollary 4.3 and Lemma 4.2 below imply that u? and o are essentially the
same thing: randomly selecting the inputs of a universal EOM yields output prefixes
whose probabilities are determined by the universal CEM.

Corollary 4.3 Let po denote the universal CEM of Theorem 4.1. For x € B*,

1" (x) = O(po()).

Lemma 4.2 For x € B,
po(z) = O(u” ().
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Proof. In the enumeration of EOMs in the proof of Theorem 4.1, let EOM;, be
an EOM representing pg. We build an EOM T such that pur(z) = po(z). The rest
follows from the Invariance Theorem (compare Proposition 3.1).

T applies EOMj to all x € B* in dovetail fashion, and simultaneously simply
reads randomly selected input bits forever. At a given time, let string variable z
denote T’s input string read so far. Starting at the right end of the unit interval
[0,1), as the Vig(z) are being updated by the algorithm of Theorem 4.1, T' keeps
updating a chain of finitely many, variable, disjoint, consecutive, adjacent, half-
open intervals VI(x) of size Vjig(x) in alphabetic order on z, such that VI(y) is
to the right of VI(z) if y = x. After every variable update and each increase of
z, T replaces its output by the z of the VI(x) with 0.z € VI(z). Since neither z
nor the VCpug(z) in the algorithm of Theorem 4.1 can decrease (that is, all interval
boundaries can only shift left), T’s output cannot either, and therefore is indeed
EOM-computable. Obviously the following holds:

CuPr(z) = CPr(z) = Cpo(z)

and
pPr(z) = Y Pr(zz) = po(x).
z€B!
O
Summary. The traditional universal c.e. measure [40, 45, 29, 16, 17, 41, 14, 30]
derives from universal MTMs with random input. What is the nature of our novel
generalization here? We simply replace the MTMs by EOMs. As shown above, this
leads to universal cumulatively enumerable measures. In general these are not c.e.
any more, but they are “just as computable” in the limit as the c.e. ones — we gain
power and generality without leaving the constructive realm and without giving
up the concept of universality. The even more dominant approximable measures,
however, lack universality.

5. Probability vs Descriptive Complexity

The size of some computable object’s minimal description is closely related to
the object’s probability. This is illustrated by Levin’s Coding Theorem [29] for
the universal discrete enumerable semimeasure m based on halting programs (see
Def. 4.11); compare independent work by Chaitin [14] who also gives credit to N.
Pippenger:

Theorem 5.1 (Coding Theorem)

For x € B*, —log m(z) < K(z) < —log m(z) + O(1) (34)

In this special case, the contributions of the shortest programs dominate the proba-
bilities of objects computable in the traditional sense. As shown by Géacs [17] for the
case of MTMs, however, contrary to Levin’s [28] conjecture, uM (z) # O(2-Km" (2))
but a slightly worse bound does hold:

?
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Theorem 5.2

EpM(z) =1 < Km™(z) < KpM (2) + Km™(KpM (2)) + 0(1).  (35)

The term —1 on the left-hand side stems from the definition of lg(z) < log(z).
We will now consider the case of probability distributions that dominate m, and
semimeasures that dominate p, starting with the case of c.e. objects.

5.1. Nowvel Theorems for EOMs and GTMs

Theorem 5.3 For x € B* with P¥(z) > 0,
KP¥(z) -1 < K¥(z) < KPE(z) + KE¥(KP¥(z)) + O(1). (36)

Using KZ(y) < log y+2log log y+ O(1) for y interpreted as an integer — compare
Def. 2.8 — this yields

2 K*() < PP(z) < 027K @) (KP (2)). (37)

That is, objects that are hard to describe (in the sense that they have only long
enumerating descriptions) have low probability.

Proof. The left-hand inequality follows by definition. To show the right-hand
side, one can build an EOM T that computes 2 € B¥ using not more than K P¥(x)+
Kr(KP¥(z))+0(1) input bits in a way inspired by Huffman-Coding [22]. The claim
then follows from the Invariance Theorem. The trick is to arrange T’s computation
such that 7’s output converges yet never needs to decrease lexicographically. T
works as follows:

(A) Emulate UF to construct a real c.e. number 0.s encoded as a
self-delimiting input program r, simultaneously run all (possibly forever
running) programs on UZ dovetail style; whenever the output of a prefix
g of any running program starts with some z € B* for the first time, set
variable V(z) := V(z) + 2749 (if no program has ever created output
starting with z then first create V' (z) initialized by 0); whenever the
output of some extension ¢' of ¢ (obtained by possibly reading additional
input bits: ¢’ = ¢ if none are read) lexicographically increases such that
it does not equal z any more, set V(z) := V(z) — 2744,

(B) Simultaneously, starting at the right end of the unit interval [0, 1), as

the V(z) are being updated, keep updating a chain of disjoint, consecu-
tive, adjacent, half-open (at the right end) intervals IV (z) = [LV (z), RV (x))
of size V(z) = RV (z) — LV (z) in alphabetic order on z, such that the
right end of the IV (z) of the largest = coincides with the right end of
[0,1), and IV (y) is to the right of IV (z) if y = z. After every variable
update and each change of s, replace the output of 7" by the z of the

IV (z) with 0.s € IV ().
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This will never violate the EOM constraints: the c.e. s cannot shrink, and since
EOM outputs cannot decrease lexicographically, the interval boundaries RV (z) and
LV (z) cannot grow (their negations are c.e., compare Lemma 4.1), hence T’s output
cannot decrease.

For z € B* the IV(z) converge towards an interval I(z) of size P¥(x). For
x € B*® with PP(z) > 0, we have: for any € > 0 there is a time to such that for
all time steps ¢ > to in T’s computation, an interval I (z) of size PP(z) — e will
be completely covered by certain IV (y) satisfying z > y and 0.2 — 0.y < €. So for
€ — 0 the I () also converge towards an interval I(z) of size P¥(z). Hence T will
output larger and larger y approximating z from below, provided 0.s € I(z).

Since any interval of size ¢ within [0,1) contains a number 0.z with I(z) =
—lg ¢, in both cases there is a number 0.s (encodable by some r satisfying r <
I(s) + Kr(I(s)) + O(1))) with I(s) = —lgP¥(x) + O(1), such that T(r) ~ =z, and
therefore Kr(z) < I(s) + Kr(l(s)) + O(1). O

Less symmetric statements can also be derived in very similar fashion:
Theorem 5.4 Let TM T induce approximable CPr(z) for all x € B* (compare
Defs. 4.10 and 4.12; an EOM would be a special case). Then for x € B*, Pr(x) > 0:

K%(z) < KPr(z) + K (K Pr(z)) + O(1). (38)

Proof. Modify the proof of Theorem 5.3 for approximable as opposed to c.e.
interval boundaries and approximable 0.s. O
A similar proof, but without the complication for the case x € B, yields:
Theorem 5.5 Let u denote an approxzimable semimeasure on © € B*; that is, pu(z)

is describable. Then for u(z) > 0:

Km(z) < Kp(z) + KmO(Ku(z) + O(1); (30)
K9(x) < Ka(x) + K¢(Ka(x)) + O(1). (40)
As a consequence,
I'L('T) —Km%(z)y. ﬂ(.Z') —K%(z)
Ku@)lo@ K@) = O S Ra@iogka@ <% ) @D

Proof. [Initialize variables Vy := 1 and IVy := [0,1). Dovetailing over all
x > ), approximate the GTM-computable p(z) = u(x) — u(x0) — p(xl) in variables
V. initialized by zero, and create a chain of adjacent intervals IV, analogously to
the proof of Theorem 5.3.

The IV, converge against intervals I, of size fi(x). Hence z is GTM-encodable
by any program r producing an output s with 0.s € I,: after every update, replace
the GTM’s output by the x of the IV, with 0.s € IV,. Similarly, if 0.s is in the
union of adjacent intervals I, of strings y starting with z, then the GTM’s output
will converge towards some string starting with . The rest follows in a way similar
to the one described in the final paragraph of the proof of Theorem 5.3. O

Using the basic ideas in the proofs of Theorem 5.3 and 5.5 in conjunction with
Corollary 4.3 and Lemma 4.2, one can also obtain statements such as:
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Theorem 5.6 Let g denote the universal CEM from Theorem 4.1. For x € B*,
Kpo(z) — O(1) < Km®(z) < Kpo(x) + Km® (K po(z)) + O(1) (42)

While P¥ dominates PM and P“ dominates P¥, the reverse statements are not
true. In fact, given the results from Sections 3.2 and 5, one can now make claims
such as the following ones:

Corollary 5.1 The following functions are unbounded:

W(x)  PPz)  PO()
WM(@) P(z) PP()

Proof. For the cases ;¥ and P, apply Theorems 5.2, 5.6 and the unbound-
edness of (10). For the case P“, apply Theorems 3.3 and 5.3. O

5.2. Tighter Bounds?

Is it possible to get rid of the small correction terms such as K¥(K PP(z)) <
O(log(—logP¥(z)) in Theorem 5.37 Note that the construction in the proof shows
that K% (z) is actually bounded by KZ(s), the complexity of the c.e. number 0.s €
I(z) with minimal K7(s). The facts 3, PM(z) =1, Y, PE(z) =1, ), P%(z) <
1, as well as intuition and wishful thinking inspired by Shannon-Fano Theorem [38]
and Coding Theorem 5.1 suggest there might indeed be tighter bounds:

Conjecture 5.1 For z € B with PM(z) > 0: PM(z) = 0(2=K" @),
Conjecture 5.2 For z € Bf with PE(z) > 0: PE(z) = 0(2=K"@).

Conjecture 5.3 For z € B! with P%(z) > 0: P%(z) = 02 K@),

Gécs has shown though that analogue conjectures for semimeasures such as u™ on
B* (as opposed to distributions on B*) are false [17].

5.3. Between EOMs and GTMs?

The dominance of P over PF comes at the expense of occasionally “unreason-
able,” nonconverging outputs. Are there classes of always converging TMs more
expressive than EOMs? Consider a TM called a PEOM whose inputs are pairs of
finite bitstrings =,y € B* (code them using 2log l(z) + 2log I(y) +1(zy) + O(1) bits).
The PEOM uses dovetailing to run all self-delimiting programs on the y-th EOM of
an enumeration of all EOMs, to approximate the probability PEOM (y,z) (again
encoded as a string) that the EOM’s output starts with x. PEOM (y,x) is approx-
imable (we may apply Theorem 5.5) but not necessarily c.e. On the other hand, it
is easy to see that PEOMs can compute all c.e. strings describable on EOMs. In
this sense PEOMs are more expressive than EOMs, yet never diverge like GTMs.
EOMs can encode some c.e. strings slightly more compactly, however, due to the
PEOM’s possibly unnecessarily bit-consuming input encoding. An interesting topic
of future research may be to establish a partially ordered expressiveness hierarchy
among classes of always converging TMs, and to characterize its top, if there is
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one, which we doubt. Candidates to consider may include TMs that approximate
certain recursive or c.e. functions of c.e. strings.

6. Consequences for Physics

Is the entire past and future history of our universe describable by a finite
sequence of bits, just like a movie stored on a compact disc, or a never ending
evolution of a virtual reality determined by a finite algorithm, such as in Example
2.1? Contrary to a widely spread misunderstanding, quantum physics, quantum
computation (e.g., [3]) and Heisenberg’s uncertainty principle do not rule this out
[35]. In absence of contrarian evidence we might assume our universe is formally
describable indeed, or at least sampled from a formally describable distribution
— if this assumption is false, then our world will forever remain beyond formal
understanding.

As obvious from equation (13), the future of some observer evolving within such
a universe depends on this prior distribution. More or less general notions of TM-
based describability put forward above lead to more or less dominant priors such as
PG on formally describable universes, P¥ and u® on enumerable universes, PM and
uM and recursive priors on monotonically computable universes. Generally speak-
ing, the theorems above show that any future corresponding to a history without
any short description (given the appropriate TM type) is necessarily unlikely. To a
certain extent, this justifies “Occam’s razor” (e.g., [4]) which expresses the ancient
preference of simple solutions over complex ones. A more detailed analysis can be
found elsewhere [36].
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