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Summary. We present the first class of mathematically rigorous, general, fully
self-referential, self-improving, optimally efficient problem solvers. Inspired by Kurt
Godel’s celebrated self-referential formulas (1931), such a problem solver rewrites
any part of its own code as soon as it has found a proof that the rewrite is useful,
where the problem-dependent utility function and the hardware and the entire ini-
tial code are described by axioms encoded in an initial proof searcher which is also
part of the initial code. The searcher systematically and efficiently tests computable
proof techniques (programs whose outputs are proofs) until it finds a provably useful,
computable self-rewrite. We show that such a self-rewrite is globally optimal—no
local maximal—since the code first had to prove that it is not useful to continue the
proof search for alternative self-rewrites. Unlike previous non-self-referential meth-
ods based on hardwired proof searchers, ours not only boasts an optimal order of
complexity but can optimally reduce any slowdowns hidden by the O()-notation,
provided the utility of such speed-ups is provable at all.

1 Introduction and Outline

In 1931 Kurt Go6del used elementary arithmetics to build a universal pro-
gramming language for encoding arbitrary proofs, given an arbitrary enumer-
able set of axioms. He went on to construct self-referential formal statements
that claim their own unprovability, using Cantor’s diagonalization trick [5] to
demonstrate that formal systems such as traditional mathematics are either
flawed in a certain sense or contain unprovable but true statements [11]. Since
Godel’s exhibition of the fundamental limits of proof and computation, and
Konrad Zuse’s subsequent construction of the first working programmable
computer (1935-1941), there has been a lot of work on specialized algorithms
solving problems taken from more or less general problem classes. Apparently,
however, one remarkable fact has so far escaped the attention of computer sci-
entists: it is possible to use self-referential proof systems to build optimally
efficient yet conceptually very simple universal problem solvers.

All traditional algorithms for problem solving / machine learning / rein-
forcement learning [19] are hardwired. Some are designed to improve some
limited type of policy through experience, but are not part of the modifiable

*Certain parts of this work appear in [46] and [47], both by Springer.
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policy, and cannot improve themselves in a theoretically sound way. Humans
are needed to create new /better problem solving algorithms and to prove their
usefulness under appropriate assumptions.

Let us eliminate the restrictive need for human effort in the most general
way possible, leaving all the work including the proof search to a system that
can rewrite and improve itself in arbitrary computable ways and in a most
efficient fashion. To attack this “Grand Problem of Artificial Intelligence,” we
introduce a novel class of optimal, fully self-referential [11] general problem
solvers called Gédel machines [43]." They are universal problem solving sys-
tems that interact with some (partially observable) environment and can in
principle modify themselves without essential limits besides the limits of com-
putability. Their initial algorithm is not hardwired; it can completely rewrite
itself, but only if a proof searcher embedded within the initial algorithm can
first prove that the rewrite is useful, given a formalized utility function reflect-
ing computation time and expected future success (e.g., rewards). We will see
that self-rewrites due to this approach are actually globally optimal (Theo-
rem 1, Section 4), relative to Godel’s well-known fundamental restrictions of
provability [11]. These restrictions should not worry us; if there is no proof of
some self-rewrite’s utility, then humans cannot do much either.

The initial proof searcher is O()-optimal (has an optimal order of complex-

ity) in the sense of Theorem 2, Section 5. Unlike Hutter’s hardwired systems
[17, 16] (Section 2), however, a Godel machine can further speed up its proof
searcher to meet arbitrary formalizable notions of optimality beyond those
expressible in the O()-notation. Our approach yields the first theoretically
sound, fully self-referential, optimal, general problem solvers.
Outline. Section 2 presents basic concepts, relations to the most relevant
previous work, and limitations. Section 3 presents the essential details of a
self-referential axiomatic system, Section 4 the Global Optimality Theorem 1,
and Section 5 the O()-optimal (Theorem 2) initial proof searcher. Section 6
provides examples and additional relations to previous work, briefly discusses
issues such as a technical justification of consciousness, and provides answers
to several frequently asked questions about Gédel machines.

2 Basic Overview, Relation to Previous Work, and
Limitations

Many traditional problems of computer science require just one problem-
defining input at the beginning of the problem solving process. For example,
the initial input may be a large integer, and the goal may be to factorize it.
In what follows, however, we will also consider the more general case where

LOr ‘Goedel machine’, to avoid the Umlaut. But ‘Godel machine’ would not be
quite correct. Not to be confused with what Penrose calls, in a different context,
‘Godel’s putative theorem-proving machine’ [29]!
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the problem solution requires interaction with a dynamic, initially unknown
environment that produces a continual stream of inputs and feedback signals,
such as in autonomous robot control tasks, where the goal may be to maxi-
mize expected cumulative future reward [19]. This may require the solution
of essentially arbitrary problems (examples in Sect. 6.2 formulate traditional
problems as special cases).

2.1 Notation and Set-up

Unless stated otherwise or obvious, throughout the paper newly introduced
variables and functions are assumed to cover the range implicit in the context.
B denotes the binary alphabet {0,1}, B* the set of possible bitstrings over
B, I(q) denotes the number of bits in a bitstring ¢; ¢, the n-th bit of g; A the
empty string (where [(X) = 0); ¢m:m = Aif m > n and ¢mgm+1 - - - ¢ otherwise
(where qo := go.0 := A).

Our hardware (e.g., a universal or space-bounded Turing machine or the
abstract model of a personal computer) has a single life which consists of
discrete cycles or time steps ¢t = 1,2, .. .. Its total lifetime 7" may or may not
be known in advance. In what follows, the value of any time-varying variable
Q@ at time ¢t will be denoted by Q(t). Occasionally it may be convenient to
consult Fig. 1.

During each cycle our hardware executes an elementary operation which
affects its variable state s € & C B* and possibly also the variable environ-
mental state Env € £. (Here we need not yet specify the problem-dependent
set £). There is a hardwired state transition function F' : Sx& — S. For ¢t > 1,
s(t) = F(s(t — 1), Env(t — 1)) is the state at a point where the hardware op-
eration of cycle ¢t — 1 is finished, but the one of ¢ has not started yet. Env(t)
may depend on past output actions encoded in s(t — 1) and is simultaneously
updated or (probabilistically) computed by the possibly reactive environment.

In order to conveniently talk about programs and data, we will often attach
names to certain string variables encoded as components or substrings of s.
Of particular interest are 3 variables called time, z, y, p:

1. At time ¢, variable time holds a unique binary representation of ¢t. We
initialize time(1) = ‘1’, the bitstring consisting only of a one. The hard-
ware increments time from one cycle to the next. This requires at most
O(log t) and on average only O(1) computational steps.

2. Variable z holds environmental inputs. For ¢ > 1, x(t) may differ from
z(t — 1) only if a program running on the Gddel machine has executed
a special input-requesting instruction at time ¢t — 1. Generally speaking,
the delays between successive inputs should be sufficiently large so that
programs can perform certain elementary computations on an input, such
as copying it into internal storage (a reserved part of s) before the next
input arrives.
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Fig. 1: Storage snapshot of a not yet self-improved example Goédel machine, with
the initial software still intact. See text for details.

3. y(t) is an output bitstring which may subsequently influence the environ-

ment, where y(1) = ‘0’ by default. For example, y(¢) could be interpreted
as a control signal for an environment-manipulating robot whose actions
may have an effect on future inputs.

. p(1) is the initial software: a program implementing the original policy for
interacting with the environment and for proof searching. Details will be
discussed below.

At any given time ¢ (1 < ¢ < T') the goal is to maximize future success

or utility. A typical “value to go” utility function (to be maximized) is of the
form u(s, Env) : § x &€ — R, where R is the set of real numbers:



Godel Machines: Fully Self-referential Optimal Universal Self-improvers 205

T

>

T=time

u(s, Env) = E, s, Env

; (1)

where r(t) is a real-valued reward input (encoded within s(t)) at time ¢,
E, (- | -) denotes the conditional expectation operator with respect to some
possibly unknown distribution p from a set M of possible distributions (M
reflects whatever is known about the possibly probabilistic reactions of the
environment), and the above-mentioned time = time(s) is a function of state
s which uniquely identifies the current cycle. Note that we take into account
the possibility of extending the expected lifespan E,(T" | s, Env) through
appropriate actions.

Alternative formalizable utility functions could favor improvement of worst
case instead of expected future performance, or higher reward intake per time
interval etc.

2.2 Basic Idea of Godel Machine

Our machine becomes a self-referential [11] Gédel machine by loading it with
a particular form of machine-dependent, self-modifying code p. The initial
code p(1) at time step 1 includes a (typically sub-optimal) problem solving
subroutine for interacting with the environment, such as Q-learning [19], and
a general proof searcher subroutine (Section 5) that systematically makes
pairs (switchprog, proof) (variable substrings of s) until it finds a proof of a
target theorem which essentially states: ‘the immediate rewrite of p through
current program switchprog on the given machine implies higher utility than
leaving p as is’. Then it executes switchprog, which may completely rewrite
p, including the proof searcher. Section 3 will explain details of the necessary
initial axiomatic system A encoded in p(1).

The Global Optimality Theorem (Theorem 1, Sect. 4) shows this self-improve-
ment strategy is not greedy: since the utility of ‘leaving p as is’ implicitly
evaluates all possible alternative switchprogs which an unmodified p might
find later, we obtain a globally optimal self-change—the current switchprog
represents the best of all possible relevant self-changes, relative to the given
resource limitations and initial proof search strategy.

2.3 Proof Techniques and an O()-optimal Initial Proof Searcher.

Section 5 will present an O()-optimal initialization of the proof searcher, that
is, one with an optimal order of complexity (Theorem 2). Still, there will
remain a lot of room for self-improvement hidden by the O()-notation. The
searcher uses an online extension of Universal Search [23, 25] to systematically
test online proof techniques, which are proof-generating programs that may
read parts of state s (similarly, mathematicians are often more interested in
proof techniques than in theorems). To prove target theorems as above, proof
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techniques may invoke special instructions for generating axioms and applying
inference rules to prolong the current proof by theorems. Here an axiomatic
system A encoded in p(1) includes axioms describing (a) how any instruction
invoked by a program running on the given hardware will change the machine’s
state s (including instruction pointers etc.) from one step to the next (such
that proof techniques can reason about the effects of any program including
the proof searcher), (b) the initial program p(1) itself (Section 3 will show that
this is possible without introducing circularity), (c) stochastic environmental
properties, (d) the formal utility function u, e.g., equation (1). The evaluation
of utility automatically takes into account computational costs of all actions
including proof search.

2.4 Relation to Hutter’s Previous Work

Hutter’s non-self-referential but still O()-optimal ‘fastest’ algorithm for all
well-defined problems HSEARCH [17] uses a hardwired brute force proof search-
er. Assume discrete input/output domains X/Y, a formal problem specifica-
tion f: X — Y (say, a functional description of how integers are decomposed
into their prime factors), and a particular x € X (say, an integer to be fac-
torized). HSEARCH orders all proofs of an appropriate axiomatic system by
size to find programs ¢ that for all z € X provably compute f(z) within time
bound t4(z). Simultaneously it spends most of its time on executing the ¢ with
the best currently proven time bound ¢,(z). It turns out that HSEARCH is as
fast as the fastest algorithm that provably computes f(z) for all z € X, save
for a constant factor smaller than 1+ € (arbitrary e > 0) and an f-specific but
z-independent additive constant [17]. This constant may be enormous though.
Hutter’s A1xi(t,l) [16] is related. In discrete cycle £k = 1,2,3,... of
A1xi(t,1)’s lifetime, action y(k) results in perception z(k) and reward r(k),
where all quantities may depend on the complete history. Using a universal
computer such as a Turing machine, A1xX1(¢,l) needs an initial offline setup
phase (prior to interaction with the environment) where it uses a hardwired
brute force proof searcher to examine all proofs of length at most L, filtering
out those that identify programs (of maximal size | and maximal runtime ¢
per cycle) which not only could interact with the environment but which for
all possible interaction histories also correctly predict a lower bound of their
own expected future reward. In cycle k, A1x1(t,) then runs all programs iden-
tified in the setup phase (at most 2'), finds the one with highest self-rating,
and executes its corresponding action. The problem-independent setup time
(where almost all of the work is done) is O(L - 2%). The online time per cycle
is O(t - 2'). Both are constant but typically huge.
Advantages and Novelty of the Godel Machine. There are major dif-
ferences between the Gédel machine and Hutter’s HSEARCH [17] and A1x1(%,1)
[16], including:

1. The theorem provers of HSEARCH and AIxi(t,l) are hardwired, non-
self-referential, unmodifiable meta-algorithms that cannot improve them-
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selves. That is, they will always suffer from the same huge constant slow-
downs (typically > 101990) buried in the O()-notation. But there is noth-
ing in principle that prevents our truly self-referential code from proving
and exploiting drastic reductions of such constants, in the best possible
way that provably constitutes an improvement, if there is any.

2. The demonstration of the O()-optimality of HSEARCH and AIXI(%,]) de-
pends on a clever allocation of computation time to some of their un-
modifiable meta-algorithms. Our Global Optimality Theorem (Theorem
1, Section 4), however, is justified through a quite different type of rea-
soning which indeed exploits and crucially depends on the fact that there
is no unmodifiable software at all, and that the proof searcher itself is
readable and modifiable and can be improved. This is also the reason why
its self-improvements can be more than merely O()-optimal.

3. HSEARCH uses a “trick” of proving more than is necessary which also dis-
appears in the sometimes quite misleading O()-notation: it wastes time on
finding programs that provably compute f(z) for all z € X even when the
current f(z)(z € X) is the only object of interest. A Godel machine, how-
ever, needs to prove only what is relevant to its goal formalized by u. For
example, the general u of eq. (1) completely ignores the limited concept of
O()-optimality, but instead formalizes a stronger type of optimality that
does not ignore huge constants just because they are constant.

4. Both the Goédel machine and AIxI(%,]) can maximize expected reward
(HSEARCH cannot). But the Gddel machine is more flexible as we may
plug in any type of formalizable utility function (e.g., worst case reward),
and unlike A1X1(%,1) it does not require an enumerable environmental dis-
tribution.

Nevertheless, we may use AIXI(%,]) or HSEARCH to initialize the substring e
of p which is responsible for interaction with the environment. The Godel
machine will replace e as soon as it finds a provably better strategy.

2.5 Limitations of Godel Machines

The fundamental limitations are closely related to those first identified by
Godel’s celebrated paper on self-referential formulae [11]. Any formal system
that encompasses arithmetics (or ZFC, etc.) is either flawed or allows for un-
provable but true statements. Hence, even a Goédel machine with unlimited
computational resources must ignore those self-improvements whose effective-
ness it cannot prove, e.g., for lack of sufficiently powerful axioms in A. In
particular, one can construct pathological examples of environments and util-
ity functions that make it impossible for the machine to ever prove a target
theorem. Compare Blum’s speed-up theorem [3, 4] based on certain incom-
putable predicates. Similarly, a realistic Godel machine with limited resources
cannot, profit from self-improvements whose usefulness it cannot prove within
its time and space constraints.
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Nevertheless, unlike previous methods, it can in principle exploit at least
the provably good speed-ups of any part of its initial software, including those
parts responsible for huge (but problem class-independent) slowdowns ignored
by the earlier approaches [17, 16].

3 Essential Details of One Representative Godel Machine

Theorem proving requires an axiom scheme yielding an enumerable set of
axioms of a formal logic system A whose formulas and theorems are symbol
strings over some finite alphabet that may include traditional symbols of logic
(such as —,A,=,(,),¥,3,..., c1,¢2,..., f1, f2,...), probability theory (such
as E(-), the expectation operator), arithmetics (+,—,/,=,>.,<,...), string
manipulation (in particular, symbols for representing any part of state s at
any time, such as s7.33(5555)). A proof is a sequence of theorems, each either
an axiom or inferred from previous theorems by applying one of the inference
rules such as modus ponens combined with unification, e.g., [10].

The remainder of this chapter will omit standard knowledge to be found
in any proof theory textbook. Instead of listing all axioms of a particular A
in a tedious fashion, we will focus on the novel and critical details: how to
overcome problems with self-reference and how to deal with the potentially
delicate online generation of proofs that talk about and affect the currently
running proof generator itself.

3.1 Proof Techniques

Brute force proof searchers (used in Hutter’s Aixi(t,]) and HSEARCH; see
Section 2.4) systematically generate all proofs in order of their sizes. To pro-
duce a certain proof, this takes time exponential in proof size. Instead our
O()-optimal p(1) will produce many proofs with low algorithmic complex-
ity [52, 21, 26] much more quickly. It systematically tests (see Sect. 5) proof
techniques written in universal language £ implemented within p(1). For ex-
ample, £ may be a variant of PROLOG [7] or the universal FORTH[28]-inspired
programming language used in recent work on optimal search [45]. A proof
technique is composed of instructions that allow any part of s to be read, such
as inputs encoded in variable z (a substring of s) or the code of p(1). It may
write on sP, a part of s reserved for temporary results. It also may rewrite
switchprog, and produce an incrementally growing proof placed in the string
variable proof stored somewhere in s. proof and sP are reset to the empty string
at the beginning of each new proof technique test. Apart from standard arith-
metic and function-defining instructions [45] that modify sP, the programming
language £ includes special instructions for prolonging the current proof by
correct theorems, for setting switchprog, and for checking whether a provably
optimal p-modifying program was found and should be executed now. Certain
long proofs can be produced by short proof techniques.
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The nature of the six proofmodifying instructions below (there are no
others) makes it impossible to insert an incorrect theorem into proof, thus
trivializing proof verification:

1. get-axiom(n) takes as argument an integer n computed by a prefix of the
currently tested proof technique with the help of arithmetic instructions
such as those used in previous work [45]. Then it appends the n-th axiom
(if it exists, according to the axiom scheme below) as a theorem to the
current theorem sequence in proof. The initial axiom scheme encodes:

a) Hardware axioms describing the hardware, formally specifying how
certain components of s (other than environmental inputs z) may
change from one cycle to the next.

For example, if the hardware is a Turing machine? (TM) [56], then
s(t) is a bitstring that encodes the current contents of all tapes of the
TM, the positions of its scanning heads, and the current internal state
of the TM’s finite state automaton, while F' specifies the TM’s look-
up table which maps any possible combination of internal state and
bits above scanning heads to a new internal state and an action such
as: replace some head’s current bit by 1/0, increment (right shift) or
decrement (left shift) some scanning head, read and copy next input
bit to cell above input tape’s scanning head, etc. Alternatively, if the
hardware is given by the abstract model of a modern microprocessor
with limited storage, s(¢) will encode the current storage contents,
register values, instruction pointers, etc.

For example, the following axiom could describe how some 64-bit hard-
ware’s instruction pointer stored in s1.g4 is continually incremented as
long as there is no overflow and the value of sg5 does not indicate that
a jump to some other address should take place:

(Vtvn: [(n <2 —DAM>0O)AE>1D)A(<T)

A(string2num(s1:64(t)) = n) A (se5(t) = 07)]
— (string2num(s1.6a(t +1)) = n+1))

Here the semantics of used symbols such as ‘(" and ‘>’ and ‘—’ (im-
plies) are the traditional ones, while ‘string2num’ symbolizes a func-
tion translating bitstrings into numbers. It is clear that any abstract
hardware model can be fully axiomatized in a similar way.

b) Reward axioms defining the computational costs of any hardware
instruction, and physical costs of output actions (e.g., control signals

2Turing reformulated Gédel’s unprovability results in terms of Turing machines
(TMs) [56] which subsequently became the most widely used abstract model of
computation. It is well-known that there are universal TMs that in a certain sense
can emulate any other TM or any other known computer. Godel’s integer-based
formal language can be used to describe any universal TM, and vice versa.
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y(t) encoded in s(t)). Related axioms assign values to certain input
events (encoded in variable z, a substring of s) representing reward or
punishment (e.g., when a Gédel machine-controlled robot bumps into
an obstacle). Additional axioms define the total value of the Godel
machine’s life as a scalar-valued function of all rewards (e.g., their
sum) and costs experienced between cycles 1 and T, etc. For example,
assume that s17.1s can be changed only through external inputs; the
following example axiom says that the total reward increases by 3
whenever such an input equals ‘11’ (unexplained symbols carry the
obvious meaning):

(Vtth : [(tl < tg) A (tl > 1) A (tz < T) A (817;18(t2) = ‘117)]

— [R(t1,t2) = R(t1,t2 — 1) + 3]),

where R(t1,t2) is interpreted as the cumulative reward between times
t1 and to. It is clear that any formal scheme for producing rewards
can be fully axiomatized in a similar way.

Environment axioms restricting the way the environment will pro-
duce new inputs (encoded within certain substrings of s) in reaction to
sequences of outputs y encoded in s. For example, it may be known in
advance that the environment is sampled from an unknown probability
distribution that is computable, given the previous history [52, 53, 16],
or at least limit-computable [39, 40]. Or, more restrictively, the envi-
ronment may be some unknown but deterministic computer program
[58, 37] sampled from the Speed Prior [41] which assigns low probabil-
ity to environments that are hard to compute by any method. Or the
interface to the environment is Markovian [33], that is, the current in-
put always uniquely identifies the environmental state—a lot of work
has been done on this special case [31, 2, 55]. Even more restrictively,
the environment may evolve in completely predictable fashion known
in advance. All such prior assumptions are perfectly formalizable in an
appropriate A (otherwise we could not write scientific papers about
them).

Uncertainty axioms; string manipulation axioms: Standard ax-
ioms for arithmetics and calculus and probability theory [20] and
statistics and string manipulation that (in conjunction with the en-
vironment axioms) allow for constructing proofs concerning (possibly
uncertain) properties of future values of s(t) as well as bounds on ex-
pected remaining lifetime / costs / rewards, given some time 7 and
certain hypothetical values for components of s(7) etc. An example
theorem saying something about expected properties of future inputs
2 might look like this:

(VhV/L e M : [(1 < tl) A (tl + 15597 < T) A (Ss;g(tl) = ‘010117)
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/\(140;44 (tl) = 4000007)} — (Ht : [(tl <t<ty+ 15597)
998
m)])%

where P,(. | .) represents a conditional probability with respect to
an axiomatized prior distribution p from a set of distributions M
described by the environment axioms (Item 1lc).
Given a particular formalizable hardware (Item la) and formalizable
assumptions about the possibly probabilistic environment (Item 1c),
obviously one can fully axiomatize everything that is needed for proof-
based reasoning.

e) Initial state axioms: Information about how to reconstruct the ini-
tial state s(1) or parts thereof, such that the proof searcher can build
proofs including axioms of the type

/\(PH($17;22(t) = ‘011011 | S(tl)) >

(Smm(1) =2), e.g.: (s7.9(1) = ‘0107).

Here and in the remainder of the paper we use bold font in formulas
to indicate syntactic place holders (such as m,n,z) for symbol strings
representing variables (such as m,n,z) whose semantics are explained
in the text (in the present context z is the bitstring s,,.,(1)).
Note that it is no fundamental problem to fully encode both the hard-
ware description and the initial hardware-describing p within p itself.
To see this, observe that some software may include a program that
can print the software.

f) Utility axioms describing the overall goal in the form of utility func-
tion u; e.g., equation (1) in Section 2.1.

. apply-rule(k, m, n) takes as arguments the index k (if it exists) of an
inference rule such as modus ponens (stored in a list of possible inference
rules encoded within p(1)) and the indices m,n of two previously proven
theorems (numbered in order of their creation) in the current proof. If
applicable, the corresponding inference rule is applied to the addressed
theorems and the resulting theorem appended to proof. Otherwise the
currently tested proof technique is interrupted. This ensures that proof is
never fed with invalid proofs.

. delete-theorem(m) deletes the m-th theorem in the currently stored
proof, thus freeing storage such that proof-storing parts of s can be reused
and the maximal proof size is not necessarily limited by storage con-
straints. Theorems deleted from proof, however, cannot be addressed any
more by apply-rule to produce further prolongations of proof.

. set-switchprog(m,n) replaces switchprog by sP,.,., provided that s? ..
is indeed a non-empty substring of sP, the storage writable by proof tech-
niques.

. state2theorem(m, n) takes two integer arguments m,n and tries to
transform the current contents of s,,., into a theorem of the form



212

Jirgen Schmidhuber
(smm(t1) = 2), e.g.: (86:9(7775555) = ‘1001"),

where t¢; represents a time measured (by checking time) shortly after
state2theorem was invoked, and z the bistring $;,.,(t1) (recall the special
case t1 = 1 of Item 1le). So we accept the time-labeled current observable
contents of any part of s as a theorem that does not have to be proven in
an alternative way from, say, the initial state s(1), because the computa-
tion so far has already demonstrated that the theorem is true. Thus we
may exploit information conveyed by environmental inputs, and the fact
that sometimes (but not always) the fastest way to determine the output
of a program is to run it.

This non-traditional online interface between syntax and semantics re-
quires special care though. We must avoid inconsistent results through
parts of s that change while being read. For example, the present value
of a quickly changing instruction pointer IP (continually updated by the
hardware) may be essentially unreadable in the sense that the execution
of the reading subroutine itself will already modify IP many times. For
convenience, the (typically limited) hardware could be set up such that it
stores the contents of fast hardware variables every ¢ cycles in a reserved
part of s, such that an appropriate variant of state2theorem() could at least
translate certain recent values of fast variables into theorems. This, how-
ever, will not abolish all problems associated with self-observations. For
example, the s,,., to be read might also contain the reading procedure’s
own, temporary, constantly changing string pointer variables, etc.? To ad-
dress such problems on computers with limited memory, state2theorem
first uses some fixed protocol to check whether the current s,,., is read-
able at all or whether it might change if it were read by the remaining
code of state2theorem. If so, or if m,n, are not in the proper range, then
the instruction has no further effect. Otherwise it appends an observed
theorem of the form (sm:n(t1) = z) to proof. For example, if the current
time is 7770000, then the invocation of state2theorem(6,9) might return
the theorem (sg.9(7775555) = ‘1001’), where 7775555 — 7770000 = 5555
reflects the time needed by state2theorem to perform the initial check and
to read leading bits off the continually increasing time (reading time also

3We see that certain parts of the current s may not be directly observable with-

out

changing the observable itself. Sometimes, however, axioms and previous ob-

servations will allow the Godel machine to deduce time-dependent storage contents
that are not directly observable. For instance, by analyzing the code being executed
through instruction pointer IP in the example above, the value of IP at certain times
may be predictable (or postdictable, after the fact). The values of other variables at
given times, however, may not be deducible at all. Such limits of self-observability

are

reminiscent of Heisenberg’s celebrated uncertainty principle [12], which states

that certain physical measurements are necessarily imprecise, since the measuring

pro

cess affects the measured quantity.
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costs time) such that it can be sure that 7775555 is a recent proper time
label following the start of state2theorem.

6. check() verifies whether the goal of the proof search has been reached.
First it tests whether the last theorem (if any) in proof has the form
of a target theorem. A target theorem states that given the current
axiomatized utility function u (Ttem 1f), the utility of a switch from p to
the current switchprog would be higher than the utility of continuing the
execution of p (which would keep searching for alternative switchprogs).
Target theorems are symbol strings (encoded in s) of the (decoded) form

(u[s(t1) ® (switchbit(t1) = ‘1), Env(t1)] >

uls(t1) ® (switchbit(t1) = ‘0’), Env(ty)]), (2)

where the variable ¢; (represented by syntactic place holder t1) stands
for a time step, while all other symbols belong to the alphabet of the
theorem-proving calculus, that is, the set of possible target theorems is
parameterized only by t;. Here the calculus should permit the notation
s(t1) @ (switchbit(t1) = ‘V’) as a shortcut for the state obtained when we
replace switchbit(t1), the true value of the variable bit switchbit (encoded
in s) at time ¢, by b € {0, 1}. This will facilitate the formulation of theo-
rems that compare values conditioned on various alternative hypothetical
properties of s(¢1). (Note that s(t1) may be only partially known by the
current proof technique even in environments where s(¢1) and switchbit(t1)
are fully predetermined for all valid ¢;.)

The purpose of introducing t; is to deal with hardware-specific temporal
delays that may be involved in checking and switching—it may take a
significant amount of time to match abstract symbol strings found during
proof search to the Gédel machine’s real current state. If a target theo-
rem has been found, check() uses a simple prewired subroutine to check
whether there is enough time left to set variable switchbit (originally 0) to
1 before the continually increasing time will equal ¢;. If this subroutine
returns a negative result, check() exits. Otherwise it sets switchbit := 1
(there is no other way of changing switchbit). Then it repeatedly tests
time until time > t;, to make sure the condition of formula (6) was ful-
filled at 1. Then it transfers control to switchprog (there is no other way
of calling switchprog). The switchprog may subsequently rewrite all parts
of s, excluding hardware-reserved parts such as time and z, but including
D.

Note that a proof technique does not necessarily have to compute the true
expected utilities of switching and not switching—it just needs to determine
which is higher. For example, it may be easy to prove that speeding up a
subroutine of the proof searcher by a factor of 2 will certainly be worth the
negligible (compared to lifetime T') time needed to execute the subroutine-
changing algorithm, no matter the precise utility of the switch.
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The axiomatic system A is a defining parameter of a given Gédel machine.
Clearly, A must be strong enough to permit proofs of target theorems. In
particular, the theory of uncertainty axioms (Item 1d) must be sufficiently
rich. This is no fundamental problem: We simply insert all traditional axioms
of probability theory [20].

4 Global Optimality Theorem

Intuitively, at any given time p should execute some self-modification algo-
rithm only if it is the ‘best’ of all possible self-modifications, given the util-
ity function, which typically depends on available resources, such as stor-
age size and remaining lifetime. At first glance, however, target theorem (6)
seems to implicitly talk about just one single modification algorithm, namely,
switchprog(t1) as set by the systematic proof searcher at time ¢;. Isn’t this
type of local search greedy? Couldn’t it lead to a local optimum instead of a
global one? No, it cannot, according to the global optimality theorem:

Theorem 1 (Globally Optimal Self-Changes, given u and A encoded
in p). Given any formalizable utility function u (Item 1f), and assuming con-
sistency of the underlying formal system A, any self-change of p obtained
through execution of some program switchprog identified through the proof of
a target theorem (6) is globally optimal in the following sense: the utility of
starting the execution of the present switchprog is higher than the wutility of
waiting for the proof searcher to produce an alternative switchprog later.

Proof. Target theorem (6) implicitly talks about all the other switchprogs that
the proof searcher could produce in the future. To see this, consider the two al-
ternatives of the binary decision: (1) either execute the current switchprog (set
switchbit = 1), or (2) keep searching for proofs and switchprogs (set switchbit
= 0) until the systematic searcher comes up with an even better switchprog.
Obviously the second alternative concerns all (possibly infinitely many) po-
tential switchprogs to be considered later. That is, if the current switchprog
were not the ‘best’, then the proof searcher would not be able to prove that
setting switchbit and executing switchprog will cause higher expected reward
than discarding switchprog, assuming consistency of A. Q.E.D.

4.1 Alternative Relaxed Target Theorem

We may replace the target theorem (6) (Item 6) by the following alternative
target theorem:

(u[s(t1) & (switchbit(ty) = ‘1’), Env(ty)] >

ul[s(t1) ® (switchbit(ty) = ‘0°), Env(ty)]). (3)
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”

The only difference to the original target theorem (6) is that the “>” sign
became a “>” sign. That is, the Goédel machine will change itself as soon
as it found a proof that the change will not make things worse. A Global
Optimality Theorem similar to Theorem 1 holds.

5 Bias-Optimal Proof Search (BIOPS)

Here we construct a p(1) that is O()-optimal in a certain limited sense to be
described below, but still might be improved as it is not necessarily optimal in
the sense of the given u (for example, the u of equation (1) neither mentions
nor cares for O()-optimality). Our Bias-Optimal Proof Search (BIOPS) is
essentially an application of Universal Search [23, 25] to proof search. Previous
practical variants and extensions of universal search have been applied [36,
38, 50, 45] to offline program search tasks where the program inputs are
fixed such that the same program always produces the same results. In our
online setting, however, BIOPS has to take into account that the same proof
technique started at different times may yield different proofs, as it may read
parts of s (e.g., inputs) that change as the machine’s life proceeds.

BIOPS starts with a probability distribution P (the initial bias) on the
proof techniques w that one can write in £, e.g., P(w) = K~'®) for programs
composed from K possible instructions [25]. BIOPS is near-bias-optimal [45]
in the sense that it will not spend much more time on any proof technique
than it deserves, according to its probabilistic bias, namely, not much more
than its probability times the total search time:

Definition 1 (Bias-Optimal Searchers [45]). Let R be a problem class, C
be a search space of solution candidates (where any problem r € R should have
a solution in C), P(q | r) be a task-dependent bias in the form of conditional
probability distributions on the candidates ¢ € C. Suppose that we also have
a predefined procedure that creates and tests any given ¢ on any r € R
within time t(q,r) (typically unknown in advance). Then a searcher is n-
bias-optimal (n > 1) if for any mazimal total search time Tiotar > 0 it is
guaranteed to solve any problem r € R if it has a solution p € C satisfying
t(p,7) < P(p | 1) Tiotar/n- It is bias-optimal if n = 1.

Method 5.1 (BIOPS) In phase (i =1,2,3,...) Do: FOR all self-delimiting
[25] proof techniques w € £ satisfying P(w) > 27¢ Do:

1. Run w until halt or error (such as division by zero) or 2¢P(w) steps con-
sumed.

2. Undo effects of w on sP (does not cost significantly more time than exe-
cuting w).

A proof technique w can interrupt Method 5.1 only by invoking instruction
check() (Item 6), which may transfer control to switchprog (which possibly
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even will delete or rewrite Method 5.1). Since the initial p runs on the formal-
ized hardware, and since proof techniques tested by p can read p and other
parts of s, they can produce proofs concerning the (expected) performance of p
and BIOPS itself. Method 5.1 at least has the optimal order of computational
complexity in the following sense.

Theorem 2. If independently of variable time(s) some unknown fast proof
technique w would require at most f(k) steps to produce a proof of difficulty
measure k (an integer depending on the nature of the task to be solved), then
Method 5.1 will need at most O(f(k)) steps.

Proof. It is easy to see that Method 5.1 will need at most O(f(k)/P(w)) =
O(f(k)) steps—the constant factor 1/P(w) does not depend on k. Q.E.D.

Note again, however, that the proofs themselves may concern quite differ-
ent, arbitrary formalizable notions of optimality (stronger than those express-
ible in the O()-notation) embodied by the given, problem-specific, formalized
utility function u. This may provoke useful, constant-affecting rewrites of the
initial proof searcher despite its limited (yet popular and widely used) notion
of O()-optimality.

5.1 How a Surviving Proof Searcher May Use BIiors to Solve
Remaining Proof Search Tasks

The following is not essential for this chapter. Let us assume that the execution
of the switchprog corresponding to the first found target theorem has not
rewritten the code of p itself—the current p is still equal to p(1)—and has
reset switchbit and returned control to p such that it can continue where it
was interrupted. In that case the BIOPS subroutine of p(1) can use the Optimal
Ordered Problem Solver OoPs [45] to accelerate the search for the n-th target
theorem (n > 1) by reusing proof techniques for earlier found target theorems
where possible. The basic ideas are as follows (details: [45]).

Whenever a target theorem has been proven, p(1) freezes the correspond-
ing proof technique: its code becomes non-writable by proof techniques to
be tested in later proof search tasks. But it remains readable, such that it
can be copy-edited and/or invoked as a subprogram by future proof tech-
niques. We also allow prefixes of proof techniques to temporarily rewrite the
probability distribution on their suffixes [45], thus essentially rewriting the
probability-based search procedure (an incremental extension of Method 5.1)
based on previous experience. As a side-effect we metasearch for faster search
procedures, which can greatly accelerate the learning of new tasks [45].

Given a new proof search task, BIOPS performs OOPS by spending half the
total search time on a variant of Method 5.1 that searches only among self-
delimiting [24, 6] proof techniques starting with the most recently frozen proof
technique. The rest of the time is spent on fresh proof techniques with arbi-
trary prefixes (which may reuse previously frozen proof techniques though)
[45]. (We could also search for a generalizing proof technique solving all proof
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search tasks so far. In the first half of the search we would not have to test
proof techniques on tasks other than the most recent one, since we already
know that their prefixes solve the previous tasks [45].)

It can be shown that OOPS is essentially 8-bias-optimal (see Def. 1), given
either the initial bias or intermediate biases due to frozen solutions to previ-
ous tasks [45]. This result immediately carries over to Biops. To summarize,
Biops essentially allocates part of the total search time for a new task to
proof techniques that exploit previous successful proof techniques in com-
putable ways. If the new task can be solved faster by copy-editing / invoking
previously frozen proof techniques than by solving the new proof search task
from scratch, then Biops will discover this and profit thereof. If not, then at
least it will not be significantly slowed down by the previous solutions—B10PS
will remain 8-bias-optimal.

Recall, however, that BIOPS is not the only possible way of initializing the
Godel machine’s proof searcher.

6 Discussion & Additional Relations to Previous Work

Here we list a few examples of possible types of self-improvements (Sect.
6.1), Godel machine applicability to various tasks defined by various utility
functions and environments (Sect. 6.2), probabilistic hardware (Sect. 6.3),
and additional relations to previous work (Sect. 6.4). We also briefly discuss
self-reference and consciousness (Sect. 6.6), and provide a list of answers to
frequently asked questions (Sect. 6.7).

6.1 Possible Types of Gédel Machine Self-improvements

Which provably useful self-modifications are possible? There are few limits to
what a Gédel machine might do:

1. In one of the simplest cases it might leave its basic proof searcher intact
and just change the ratio of time-sharing between the proof searching sub-
routine and the subpolicy e—those parts of p responsible for interaction
with the environment.

2. Or the Godel machine might modify e only. For example, the initial e
may regularly store limited memories of past events somewhere in s; this
might allow p to derive that it would be useful to modify e such that e
will conduct certain experiments to increase the knowledge about the en-
vironment, and use the resulting information to increase reward intake. In
this sense the Gdédel machine embodies a principled way of dealing with
the exploration versus exploitation problem [19]. Note that the expected
utility of conducting some experiment may exceed the one of not conduct-
ing it, even when the experimental outcome later suggests to keep acting
in line with the previous e.
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. The Godel machine might also modify its very axioms to speed things

up. For example, it might find a proof that the original axioms should be
replaced or augmented by theorems derivable from the original axioms.

. The Goédel machine might even change its own utility function and tar-

get theorem, but can do so only if their new values are provably better
according to the old ones.

. In many cases we do not expect the Goédel machine to replace its proof

searcher by code that completely abandons the search for proofs. Instead,
we expect that only certain subroutines of the proof searcher will be sped
up—compare the example at the end of Item 6 in Section 3.1-—or that per-
haps just the order of generated proofs will be modified in problem-specific
fashion. This could be done by modifying the probability distribution on
the proof techniques of the initial bias-optimal proof searcher from Section
5.

. Generally speaking, the utility of limited rewrites may often be easier to

prove than the one of total rewrites. For example, suppose it is 8:00 PM
and our Gédel machine-controlled agent’s permanent goal is to maximize
future expected reward, using the (alternative) target theorem (4.1). Part
thereof is to avoid hunger. There is nothing in its fridge, and shops close
down at 8:30 PM. It does not have time to optimize its way to the su-
permarket in every little detail, but if it does not get going right now it
will stay hungry tonight (in principle such near-future consequences of
actions should be easily provable, possibly even in a way related to how
humans prove advantages of potential actions to themselves). That is, if
the agent’s previous policy did not already include, say, an automatic daily
evening trip to the supermarket, the policy provably should be rewritten
at least limitedly and simply right now, while there is still time, such that
the agent will surely get some food tonight, without affecting less urgent
future behavior that can be optimized/decided later, such as details of the
route to the food, or of tomorrow’s actions.

. In certain uninteresting environments reward is maximized by becoming

dumb. For example, a given task may require to repeatedly and forever ex-
ecute the same pleasure center-activating action, as quickly as possible. In
such cases the Godel machine may delete most of its more time-consuming
initial software including the proof searcher.

. Note that there is no reason why a Godel machine should not augment its

own hardware. Suppose its lifetime is known to be 100 years. Given a hard
problem and axioms restricting the possible behaviors of the environment,
the Godel machine might find a proof that its expected cumulative reward
will increase if it invests 10 years into building faster computational hard-
ware, by exploiting the physical resources of its environment.
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6.2 Example Applications

Ezample 1 (Mazimizing expected reward with bounded resources). A robot that
needs at least 1 liter of gasoline per hour interacts with a partially unknown
environment, trying to find hidden, limited gasoline depots to occasionally
refuel its tank. It is rewarded in proportion to its lifetime, and dies after at
most 100 years or as soon as its tank is empty or it falls off a cliff, etc. The
probabilistic environmental reactions are initially unknown but assumed to
be sampled from the axiomatized Speed Prior [41], according to which hard-
to-compute environmental reactions are unlikely. This permits a computable
strategy for making near-optimal predictions [41]. One by-product of maxi-
mizing expected reward is to maximize expected lifetime.

Less general, more traditional examples that do not involve significant in-
teraction with a probabilistic environment are also easily dealt with in the
reward-based framework:

Ezample 2 (Time-limited NP-hard optimization). The initial input to the
Go6del machine is the representation of a connected graph with a large number
of nodes linked by edges of various lengths. Within given time 7T it should find
a cyclic path connecting all nodes. The only real-valued reward will occur at
time T. It equals 1 divided by the length of the best path found so far (0 if
none was found). There are no other inputs. The by-product of maximizing
expected reward is to find the shortest path findable within the limited time,
given the initial bias.

Ezample 3 (Fast theorem proving). Prove or disprove as quickly as possible
that all even integers > 2 are the sum of two primes (Goldbach’s conjecture).
The reward is 1/t, where t is the time required to produce and verify the first
such proof.

Ezample 4 (Optimize any suboptimal problem solver). Given any formalizable
problem, implement a suboptimal but known problem solver as software on
the Godel machine hardware, and let the proof searcher of Section 5 run in
parallel.

6.3 Probabilistic Godel Machine Hardware

Above we have focused on an example deterministic machine. It is straight-
forward to extend this to computers whose actions are computed in proba-
bilistic fashion, given the current state. Then the expectation calculus used
for probabilistic aspects of the environment simply has to be extended to
the hardware itself, and the mechanism for verifying proofs has to take into
account that there is no such thing as a certain theorem—at best there are
formal statements which are true with such and such probability. In fact, this
may be the most realistic approach as any physical hardware is error-prone,
which should be taken into account by realistic probabilistic Gédel machines.
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Probabilistic settings also automatically avoid certain issues of axiomatic
consistency. For example, predictions proven to come true with probability
less than 1.0 do not necessarily cause contradictions even when they do not
match the observations.

6.4 More Relations to Previous Work on Less General
Self-improving Machines

Despite (or maybe because of) the ambitiousness and potential power of self-
improving machines, there has been little work in this vein outside our own
labs at IDSTA and TU Munich. Here we will list essential differences between
the Gddel machine and our previous approaches to ‘learning to learn,” ‘met-
alearning,’ self-improvement, self-optimization, etc.

1. Goédel Machine versus Success-Story Algorithm and Other Met-
alearners
A learner’s modifiable components are called its policy. An algorithm that
modifies the policy is a learning algorithm. If the learning algorithm has
modifiable components represented as part of the policy, then we speak of
a self-modifying policy (SMP) [48]. SMPs can modify the way they modify
themselves etc. The Go6del machine has an SMP.
In previous work we used the success-story algorithm (SSA) to force
some (stochastic) SMPs to trigger better and better self-modifications
[35, 49, 48, 50]. During the learner’s life-time, SSA is occasionally called
at times computed according to SMP itself. SSA uses backtracking to
undo those SMP-generated SMP-modifications that have not been em-
pirically observed to trigger lifelong reward accelerations (measured up
until the current SSA call—this evaluates the long-term effects of SMP-
modifications setting the stage for later SMP-modifications). SMP-modifi-
cations that survive SSA represent a lifelong success history. Until the next
SSA call, they build the basis for additional SMP-modifications. Solely by
self-modifications our SMP /SSA-based learners solved a complex task in
a partially observable environment whose state space is far bigger than
most found in the literature [48].
The Godel machine’s training algorithm is theoretically more powerful
than SSA though. SSA empirically measures the usefulness of previ-
ous self-modifications, and does not necessarily encourage provably op-
timal ones. Similar drawbacks hold for Lenat’s human-assisted, non-
autonomous, self-modifying learner [22], our Meta-Genetic Programming
[32] extending Cramer’s Genetic Programming [8, 1], our metalearning
economies [32] extending Holland’s machine learning economies [15], and
gradient-based metalearners for continuous program spaces of differen-
tiable recurrent neural networks [34, 13]. All these methods, however,
could be used to seed p(1) with an initial policy.
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. Godel Machine versus Ooprs and OOPS-RL
The Optimal Ordered Problem Solver Oops [45, 42] (used by BIOPS in
Sect. 5.1) is a bias-optimal (see Def. 1) way of searching for a program that
solves each problem in an ordered sequence of problems of a reasonably
general type, continually organizing and managing and reusing earlier
acquired knowledge. Solomonoff recently also proposed related ideas for
a scientist’s assistant [54] that modifies the probability distribution of
universal search [23] based on experience.
As pointed out earlier [45] (section on OOPS limitations), however, OOPs-
like methods are not directly applicable to general lifelong reinforcement
learning (RL) tasks [19] such as those for which AIXI [16] was designed.
The simple and natural but limited optimality notion of OOPS is bias-
optimality (Def. 1): OOPS is a near-bias-optimal searcher for programs
which compute solutions that one can quickly verify (costs of verification
are taken into account). For example, one can quickly test whether some
currently tested program has computed a solution to the towers of Hanoi
problem used in the earlier paper [45]: one just has to check whether the
third peg is full of disks.
But general RL tasks are harder. Here, in principle, the evaluation of the
value of some behavior consumes the learner’s entire life! That is, the naive
test of whether a program is good or not would consume the entire life.
That is, we could test only one program; afterwards life would be over.
So general RL machines need a more general notion of optimality, and
must do things that plain OoPs does not do, such as predicting future
tasks and rewards. It is possible to use two OOPS -modules as compo-
nents of a rather general reinforcement learner (OOPS-RL), one module
learning a predictive model of the environment, the other one using this
world model to search for an action sequence maximizing expected reward
[45, 44]. Despite the bias-optimality properties of O0PS for certain or-
dered task sequences, however, OOPS-RL is not necessarily the best way
of spending limited computation time in general RL situations.
A provably optimal RL machine must somehow prove properties of oth-
erwise un-testable behaviors (such as: what is the expected reward of this
behavior which one cannot naively test as there is not enough time). That
is part of what the Godel machine does: It tries to greatly cut testing time,
replacing naive time-consuming tests by much faster proofs of predictable
test outcomes whenever this is possible.
Proof verification itself can be performed very quickly. In particular, ver-
ifying the correctness of a found proof typically does not consume the
remaining life. Hence the Gédel machine may use OOPS as a bias-optimal
proof-searching submodule. Since the proofs themselves may concern quite
different, arbitrary notions of optimality (not just bias-optimality), the
Godel machine is more general than plain OOPS. But it is not just an ex-
tension of OOPS. Instead of OOPS it may as well use non-bias-optimal al-
ternative methods to initialize its proof searcher. On the other hand, Ooprs
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is not just a precursor of the Godel machine. It is a stand-alone, incremen-
tal, bias-optimal way of allocating runtime to programs that reuse previ-
ously successful programs, and is applicable to many traditional problems,
including but not limited to proof search.

. Godel Machine versus AIXI etc.

Unlike Godel machines, Hutter’s recent AIXI model [16] generally needs
unlimited computational resources per input update. It combines Solo-
monoff’s universal prediction scheme [52, 53] with an ezpectimaz compu-
tation. In discrete cycle k = 1,2,3,..., action y(k) results in perception
z(k) and reward r(k), both sampled from the unknown (reactive) envi-
ronmental probability distribution p. AIXI defines a mixture distribution
& as a weighted sum of distributions v € M, where M is any class of
distributions that includes the true environment p. For example, M may
be a sum of all computable distributions [52, 53], where the sum of the
weights does not exceed 1. In cycle k& + 1, A1xX1 selects as next action
the first in an action sequence maximizing £-predicted reward up to some
given horizon. Recent work [18] demonstrated AIXI ’s optimal use of ob-
servations as follows. The Bayes-optimal policy p¢ based on the mixture
& is self-optimizing in the sense that its average utility value converges
asymptotically for all u € M to the optimal value achieved by the (infea-
sible) Bayes-optimal policy p* which knows p in advance. The necessary
condition that M admits self-optimizing policies is also sufficient. Fur-
thermore, p¢ is Pareto-optimal in the sense that there is no other policy
yielding higher or equal value in all environments v € M and a strictly
higher value in at least one [18].

While AIX1 clarifies certain theoretical limits of machine learning, it is
computationally intractable, especially when M includes all computable
distributions. This drawback motivated work on the time-bounded, asymp-
totically optimal A1X1(t,l) system [16] and the related HSEARCH [17], both
already discussed in Section 2.4, which also lists the advantages of the
Godel machine. Both methods, however, could be used to seed the Godel
machine with an initial policy.

It is the self-referential aspects of the Goédel machine that relieve us of
much of the burden of careful algorithm design required for A1x1(t,) and
HseARCH. They make the Godel machine both conceptually simpler and
more general than A1x1(t,/) and HSEARCH.

6.5 Are Humans Probabilistic G6del Machines?

We

do not know. We think they better be. Their initial underlying formal

system for dealing with uncertainty seems to differ substantially from those
of traditional expectation calculus and logic though—compare Items lc and
1d in Sect. 3.1 as well as the supermarket example in Sect. 6.1.
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6.6 Godel Machines and Consciousness

In recent years the topic of consciousness has gained some credibility as a
serious research issue, at least in philosophy and neuroscience, e.g., [9]. How-
ever, there is a lack of technical justifications of consciousness: so far nobody
has shown that consciousness is really useful for solving problems, although
problem solving is considered of central importance in philosophy [30].

The fully self-referential Gédel machine may be viewed as providing just
such a technical justification. It is “conscious” or “self-aware” in the sense
that its entire behavior is open to self-introspection, and modifiable. It may
“step outside of itself” [14] by executing self-changes that are provably good,
where the proof searcher itself is subject to analysis and change through the
proof techniques it tests. And this type of total self-reference is precisely the
reason for its optimality as a problem solver in the sense of Theorem 1.

6.7 Frequently Asked Questions

In the past half year the author frequently fielded questions about the Godel
machine. Here a list of answers to typical questions.

1. Q: Does the exact business of formal proof search really make sense in the

uncertain real world?
A: Yes, it does. We just need to insert into p(1) the standard axioms for
representing uncertainty and for dealing with probabilistic settings and
expected rewards etc. Compare items 1d and 1c in Section 3.1, and the
definition of utility as an exzpected value in equation (1).

2. Q: The target theorem (6) seems to refer only to the very first self-change,

which may completely rewrite the proof-search subroutine—doesn’t this
make the proof of Theorem 1 invalid? What prevents later self-changes
from being destructive?
A: This is fully taken care of. Please look once more at the proof of
Theorem 1, and note that the first self-change will be executed only if it
is provably useful (in the sense of the present untility function u) for all
future self-changes (for which the present self-change is setting the stage).
This is actually the main point of the whole Gédel machine set-up.

3. Q (related to the previous item): The Géodel machine implements a meta-
learning behavior: what about a meta-meta, and a meta-meta-meta level?
A: The beautiful thing is that all meta-levels are automatically collapsed
into one: any proof of a target theorem automatically proves that the
corresponding self-modification is good for all further self-modifications
affected by the present one, in recursive fashion.

4. Q: The Gdodel machine software can produce only computable mappings
from input sequences to output sequences. What if the environment is non-
computable?

A: Many physicists and other scientists (exceptions: [58, 37]) actually do
assume the real world makes use of all the real numbers, most of which
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are incomputable. Nevertheless, theorems and proofs are just finite symbol
strings, and all treatises of physics contain only computable axioms and
theorems, even when some of the theorems can be interpreted as making
statements about uncountably many objects, such as all the real numbers.
(Note though that the Lowenheim-Skolem Theorem [27, 51] implies that
any first order theory with an uncountable model such as the real numbers
also has a countable model.) Generally speaking, formal descriptions of
non-computable objects do not at all present a fundamental problem—
they may still allow for finding a strategy that provably maximizes utility.
If so, a Godel machine can exploit this. If not, then humans will not have
a fundamental advantage over Gédel machines.

. Q: Isn’t automated theorem-proving very hard? Current Al systems cannot

prove nontrivial theorems without human intervention at crucial decision
points.

A: More and more important mathematical proofs (four color theorem,
etc.) heavily depend on automated proof search. And traditional theorem
provers do not even make use of our novel notions of proof techniques
and O()-optimal proof search. Of course, some proofs are indeed hard to
find, but here humans and Gdédel machines face the same fundamental
limitations.

. Q: Don’t the “no free lunch theorems” [57] say that it is impossible to

construct universal problem solvers?

A: No, they do not. They refer to the very special case of problems sam-
pled from i.i.d. uniform distributions on finite problem spaces. See the
discussion of no free lunch theorems in an earlier paper [45].

. Q: Can’t the Gédel machine switch to a program switchprog that rewrites

the wutility function to a “bogus” wutility function that makes unfounded
promises of big rewards in the near future?

A: No, it cannot. It should be obvious that rewrites of the utility function
can happen only if the Gédel machine first can prove that the rewrite is
useful according to the present utility function.

7 Conclusion

The initial software p(1) of our machine runs an initial problem solver, e.g.,
one of Hutter’s approaches [17, 16] which have at least an optimal order of
complexity. Simultaneously, it runs an O()-optimal initial proof searcher us-

ing

an online variant of Universal Search to test proof techniques, which are

programs able to compute proofs concerning the system’s own future perfor-
mance, based on an axiomatic system A encoded in p(1), describing a formal
utility function wu, the hardware and p(1) itself. If there is no provably good,
globally optimal way of rewriting p(1) at all, then humans will not find one ei-
ther. But if there is one, then p(1) itself can find and exploit it. This approach
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yields the first class of theoretically sound, fully self-referential, optimally ef-
ficient, general problem solvers.

After the theoretical discussion in Sects. 1 through 5, one practical question
remains: to build a particular, especially practical Gédel machine with small
initial constant overhead, which generally useful theorems should one add as
axioms to A (as initial bias) such that the initial searcher does not have to
prove them from scratch?
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